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signal using a minLature accelerometer; this data was used for objective
evaluation of pitch extractors. Since the accelerometer is relatively in-
sensitive to acoustic background noise, this method yields accurate pitch
and voicing data even in noise. 9 1 .-

*For formal subjective evaluation of the chosen pitch extractors, a speech
database of 48 sentences that are likely to cause pitch and voicing errors
was developed.! Test stimuli were generated using two 2.4 kbit/s coders
(LPC and HDV), 6 pitch extractors (5 algorithms under test and the ref-
erence), and 2) noise conditions (clear and Air-Borne Comand Post or ABCP
noise). Two eparate tests, one for each noise condition, were run. Eight
listeners rated the speech quality of the stimuli on an 8-point scale.
The results ok the subjective tests shoved the reference subglottal-signal-
based pitch extractor to be the best under all four coder/noise conditions,
validating its use as reference in the subsequent objective evaluation work.
The results also indicated two best pitch extractors under test; one pro-
duced the highest mean rating in the clear and the other, in ABCP noise.

--- The objective evaluation method developed in this work involves comparing,
on a frame-by-frame basis, the test pitch extractor data with the reference
pitch data, computing objective pitch and voicing error measures, and --

averaging over the sentences from the speech database. _devvjoping
objective measures, a study was first conducted to assess the perceptual
effects of introducing different types and amounts of pitch and voicing
errors into the reference pitch data. Based on the results of this study,
a large number of objective measures for evaluating pitch extractors were
developed, using different combinations of one or more of the following _
components: percentage of the frames containing voicing errors and gross _
pitch errors, energy weighting, weighting based on the duration of the
errors, pitch frequency and pitch error weighting, and context-dependent
error measurement. Two previously reported objective measures were also
implemented. Twelve of the objective measures developed in this work pro-
vided consistently high correlation with mean subjective ratings in each of
the four cases, two coders each in clear and in ABCP noise. In contrast, "
the previously reported measures provided high correlation in the clear and
substantially lower correlation in the noise. Finally, the best overall
objective meaure produced excellent correlations, ranging from -0.953 to
-0.995, with the overall mean subjective rating. This measure also pre-
dicted nearly perfectly the rank ordering of the five test pitch extractors
by the subjective rating, inall coder/noise conditions.

UNoLARRTF-"

SIC VU m V CLA SIPI CATION @ Two$ PA e Dm eft £fw.ero-

.......................................................... "...'..*.. .* . ...... . . . . . . .



'' :

Report No. 5726 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page

1. VIITRODUCTION

1.1 Goals of the Project
1.2 Highlights of the Work 3
1.3 Overview of the Report 8

. 2. TWO 2.4 KBIT/S S CPEEC CODERS 10

2.1 LPC Coder 10
K 2.2 UDV Coder 11 L

. 3. FIVE PITCH UACTORS 13

3.1 AMDF-DYPTRACK Algorithm 14
. 3.2 Gold Pitch Detector 16

3.3 Harmonic-Sieve Method 17
3.4 ILS Cepstral Algorithm 18

" 3.5 JSRU Cepstral Algorithm 19

4. INITIAL INVSTIGA7TIOI O TIE 7IVE PITCH EXTRACTORS 21

* . 4.1 TI Speech and Pitch Databases 21

DW2 .-CAF

_ o -

4D-.

-D,. , is-t-" - " ... ..., .. .. . ... . . .. ,. .



* Report No. 5726 Bolt Beranek and Newmn Inc.

4.2 Pitch and Voicing Error Measures 24
4.3 Objective Evaluiation 27
4.4 Subjective Evaluation 32 6Z

5.S A METHOD FOR GENERATING REFERENCE PITCH DATA 34

5.1 EPID Algorithm 34
5.2 Voicing Decision and Tim-Synchronous Pitch 38
5.3 Performance with Speech Signal as Input 42

6.* FORMAL SUBJECTIVE EVALUATION OF PITCH EXTRACTORS 44

6.1 Speech Database 4
6.2 Generation of Reference and Test Pitch Data 49
6.3 Subjective Tests 54
6.4 Test Results 58

7.* PERCEPTUAL EFFECTS OF PITCH AND VOICING ERR0RS 75

7.1 Controlled Generation of Pitch and Voicing Errors 76
7.2 Perceptual Effects of Voicing Errors so
7.3 Perceptual Effects of Pitch Errors 85 z

8. OBJECTIVE EVALUATION OF PITCH EXTRACTORS 89

8.1 Development of Objective Measures 89
8.1.1 Basic Error Measures 90
8.1.2 Methods for Weighting the Errors 94
8.1.3 Computation of Objective Measures 99



Report No. 5726 Bolt Beranek and Newman Inc.

8.2 Correlation with Subjective Rating 101

8.3 Recommendations 110

9. SUMSMARY AND FUTURE RESEARCH 115

REFERENCES 119



Report No. 5726 Bolt Beranek and Newman Inc.

LIST OF FIGURES

PAGE

FIG. 1. Total error plotted as a function of the number of frames of skew 28

between the test and the reference pitch files, for each of five
pitch extractors.

FIG. 2. (a) Signal from audio microphone 10 cm from lips, vowel [a]. 36
(b) Simultaneous signal from an external accelerometer attached

to the throat just below the glottis.
FIG. 3. Waveforms of the accelerometer and speech signals. 40
FIG. 4. A bar chart of the mean subjective rating scores, comparing the 61

six pitch extractors under each of the four coder/noise conditions.
FIG. 5. A bar chart of the mean subjective rating scores, comparing the 63

HDV coder with the LPC coder for each of the six pitch extractors
and under clear and noise conditions.

FIG. 6. Mean subjective scores for each speaker, under the clear 66
condition.

FIG. 7. Mean subjective scores for each speaker, under the ABCP noise 67
condition.

FIG. 8. Mean subjective scores for each of the six common sentences, 69
under the clear condition.

FIG. 9. Mean subjective scores for each of the six common sentences, 70
under the ABCP noise condition.

FIG. 10. Mean subjective score plotted as a function of the 48 speaker- 71
sentence stimuli, for three pitch extractors under the clear
condition.

- FIG. 11. Mean subjective score plotted as a function of the 48 speaker- 72
sentence stimuli, for three pitch extractors under the ABCP
noise condition.

iv

....... ... ...

. . . . . . .* *.% *.. .. ........ . . . . . ... ... '. ..- ... .. . ... . . . . . . . .. -



S. p

Report No. 5726 Bolt Beranek and Newman Inc.

LIST OF TABLES

PAGE

TABLE 1. Speech materials used in the chosen subset of the TI database. 23
- TABLE 2. Details of speakers included in the chosen subset of the TI 23

database.
TABLE 3. Pitch and voicing error results obtained over the six TI sentences, 31

for six pitch extractors.
TABLE 4. Pitch and voicing error results obtained over the six TI sentences, 42

for FPRDM.
TABLE 5. Sentences used in the speech database. 47
TABLE 6. Basic pitch and voicing error results for the five pitch extractors, 91

computed over the 48-sentence clean-speech database.
TABLE 7. Basic pitch and voicing error results for the five pitch extractors, 92

computed over the 48-sentence ABCP noise-added speech database.
TABLE 8. 5-item correlation results for four basic or unweighted error 104

measures.
TABLE 9. 5-item correlation results for three forms of energy weighting. 104
TABLE 10. 5-item correlation results for 12 b-gst measures and 2 reference 107

measures.
TABLE 11. 40-item correlation results for 12 best measures and 2 reference 108

measures.
TABLE 12. Average correlation results for 12 best measures and 2 reference 109

measures.3 TABLE 13. Objective error scores produced by selected 5 best measures and 2 113
reference measures, for the clear condition.

TABLE 14. Objective error scores produced by selected 5 best measures and 2 114
7. "reference measures, for the ABCP noise condition.

v

* .* . .** ... * .. . . . .. . . * . . . . .. .*.



Report No. 5726 Bolt Beranek and Newman Inc.

OI"LEDGNTS

The authors wish to thank their colleagues K. Field for bringing up some

of the pitch extraction programs on the VAX computer and for analyzing the

results of the subjective tests; A.W.F. Huggins for his help in the design of

the subjective tests and in the analysis of the results of the subjective

tests; and A. Derr for his help in the development of the speech database.

The following individuals provided their pitch extraction programs for

evaluation in this project: B. Dupree and N. Green, Joint Speech Research

Unit, U.K.; C. Gillman, University of Wisconsin; W. Henke, Belmont,

MA; E. Singer, Lincoln Laboratory; and L.F. Willems, Institute for Perception

Research, The Netherlands. G. Doddington and B. Secrest of Texas Instruments

provided their speech and hand-edited databases, and J. Picone also of Texas

Instruments provided the details of the T's objective pitch evaluation

measure. Finally, the authors would like to thank J. Lambert and G. Moran of

the Defense Communications Agency for their interest and encouragement during

the course of this project.

Vi

I- .-L

'• .

I.



Report No. 5726 Bolt Beranek and Newman Inc.

.1 A SPECIAL NOTE

We had received magnetic tape copies of the pitch extraction programs

S:"directly from the respective authors or their associates. We carefully tested

_ mthese programs before we evaluated them using subjective and objective

methods. In cases of problems, we consulted with the authors whenever

possible. However, we do not rule out the possibility of mistakes in the way

we had used these pitch extraction programs. We have pointed out in the

report an inadvertent error in the amount of delay we had used for the Gold

pitch detector, which led to its higher pitch and voicing errors and lower

subjective scores. We sincerely apologize for this mistake. A thorough check

* . did not reveal any further mistakes. We have confirmed that the same sets of

pitch and voicing data were used for both subjective and objective evaluation.

This ensures that the high correlation scores we obtained for our objective

* ,. pitch evaluation measures are indeed accurate.

7
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i mThe overall objective of this project was to conduct a comparative

evaluation of selected pitch and voicing extraction algorithms for use in 2.4

kbit/s LPC and harmonic deviations speech coders. In this chapter, we state

the specific goals of this work (Section 1.1), present the highlights of this

*work (Section 1.2), and provide an overview of the rest of the report (Section

1.3)."

1.1 Goals of the Project

As part of an earlier project (Contract No. DCAI00-80-C-0039), we had

developed the harmonic deviations (HDV) coder [1, 2]. At a synchronous

:- transmission data rate of 2.4 kbits/s, the HDV coder produces noticeably

better speech quality than does the U.S. Government standard coder LPC-10.

However, both the HDV and LPC-10 coders use the same ANDF-DYPTRACK algorithm

for extracting the pitch and voicing data (3]. In our experience dealing with

the real-time LPC-10 coder implemented on the MAP-300 array processor (41 and

- in the experience of others, the AMDF-DYPTRACK algorithm produces pitch and

voicing errors for certain types of speakers. Also, for a given speaker, the

algorithm works well when the speaker talks with a nearly monotone pitch, but

tends to produce pitch errors when the speaker uses a large pitch range to

p , 1

:... .. .. .. .. .. .. .. ..
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reflect his/her excitement, for example. The pitch and voicing errors

mentioned above cause the coder output speech to degrade noticeably. For the

HDV coder, pitch errors produce an additional effect. Since the RDV coder

achieves speech quality improvement over the LPC-10 by correcting the

amplitudes of the LPC model spectrum at a selected set of the harmonics of the

fundamental frequency, any error in the extracted pitch tends to reduce the

effectiveness of the spectral corrections and hence reduce the extent of

improvement over the LPC-lO.

Based on the above considerations, our goal in the present project was to

study and comparatively evaluate existing pitch and voicing extraction

algorithms, with specific emphasis on their use in the EDV coder. For

* comparison purposes, we also included in our work the application to the LPC

coder. Specific objectives of this project are stated as follows:

o Study and review a number of published algorithms for pitch and
voicing extraction

o Select several algorithms for comparative evaluation and implement
them on our computer

o Develop a speech database containing speech materials and speakers
specifically chosen for testing pitch extraction algorithms

o Develop a method for obtaining accurate pitch and voicing data to be
used as reference in objective evaluation of pitch extractors

2
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o Evaluate the selected pitch and voicing extraction algorithms using
formal subjective listening tests in which subjects compare the
speech outputs obtained using each of these algorithms in both the

* IDV and LPC coders, under two conditions:

1. clean or noise-free input speech and

2. input speech corrupted by Air-Borne Command Post (ABCP) noise

o Develop objective measures for evaluating pitch extractors, which
produce high correlation with subjective judgments from the above-
mentioned listening tests.

Before we present the highlights of our work, we point out that we use

the term 'pitch extractor' to mean pitch and voicing extractor. Also,

strictly speaking, pitch frequency refers to a perceived attribute of the

physically measurable quantity fundamental frequency. For the purpose of this

* . report, however, we do not distinguish between the two terms, pitch frequency

,* and fundamental frequency.

1.2 Highlights of the Work

From a review of the available pitch extractors, we chose and implemented

• five algorithms: one is the AMDF-DYPTRACK pitch algorithm used in LPC-10

(denoted in this report as ANDFD); one is a time-domain, parallel-processing

, algorithm (Gold pitch detector); one uses the power spectrum to determine the

- 3
/, ,
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harmonic pattern (Harmonic-Sieve or H-S algorithm); and two use the cepstrum

(Interactive Laboratory System or ILS algorithm and Joint Speech Research Unit

or JSRU algorithm). To bring up the five algorithms on our computer, we

obtained the magnetic tape copy of the working programs from the respective

authors or their associates. In our initial tests of the five algorithms, we

used Texas Instruments speech and hand-edited pitch databases. Also, we

conducted informal listening tests on speech output from the LPC and HDV

coders using each of the five pitch extractors.

To extract accurate, reference pitch and voicing data, which is required

for objective evaluation of pitch extractors, we developed and tested an

automatic method that uses as input the subglottal signal recorded --

simultaneously with the speech signal using a miniature accelerometer. The

method (denoted in this report as FPRDM, where FPRD stands for "fundamental

period" and M stands for "modified") is a modification of the one originally -

developed at Massachusetts Institute of Technology. The original algorithm

provides pitch-synchronously a pitch value and an associated confidence level.

Our modified algorithm extracts the voicing decision and provides both pitch -

and voicing data time-synchronously as required by the LPC and UDV coders and

as required for objective evaluation. Since the accelerometer is relatively

insensitive to acoustic background noise, the FPRM method yields accurate

4
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* pitch and voicing data even in noise.

For formal subjective evaluation of the chosen pitch extractors, we

developed a speech database of a total of 48 sentences from three male and

- three female speakers, representing a wide range of pitch. We selected the

speech materials from a phoneme-specific database of 120 sentences (developed

as part of an earlier BBN project) and the speakers from a population of 12

males and 12 females in such a way that both the sentences and the speakers

are likely to cause pitch and voicing errors, which facilitates efficient

subjective and objective testing of the pitch extractors. We used the real-

time LPC-10 coder running on the HAP-300 in this selection process. We

generated the test stimuli using two coders (LPC and EDV), six pitch

". extractors (FPRDM and the five algorithms under test), and two noise

conditions (clear and ABCP). We ran two separate tests, one for each noise

condition. light listeners rated the speech quality of the stimuli on an 8-

point rating scale. We computed the mean rating scores for each pitch

extractor under four conditions: LPC/Clear, EDV/Clear, LPC/Noise, and

_DV/Noise. The major results of the subjective tests are as follows:

o The FPRD pitch was judged to the best for all four coder/noise
conditions. This result validates our use of the FPRDM pitch as
reference for objective evaluation.

5
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o Of the five test pitch extractors, the ANDFD algorithm produced the
best speech quality in the clear condition, with the JSRU method
being slightly worse. In ABCP noise, however, the JSRU method was
far superior to all four pitch extractors; AMDFD was rated third,
being only slightly worse than the second place ILS algorithm.
Overall, the results show JSRU and AMDYD to be the two best pitch
extractors.

o Differences in the mean ratings between the HDV coder and the LPC
coder were small. The reason for this result is that the sentences
included in the tests were designed to expose the differences among
the pitch extractors and are not suited to demonstrate the speech
quality differences between the two coders.

For developing objective pitch evaluation measures, we first conducted a

study involving informal listening tests, to assess the perceptual effects of

introducing different types and amounts of pitch and voicing errors into the

reference pitch data. The objective evaluation method involves comparing, on -- -

a frame-by-frame basis, the test pitch data obtained using a pitch extractor

under evaluation with the reference FPR2M pitch data, computing objective

pitch and voicing error measures, and averaging over the sentences from the .

speech database. Based on the results of the above-mentioned perceptual

study, we developed a large number of objective measures for evaluating pitch

extractors, using different combinations of one or more of the following

components: percentage of the processed frames containing voicing errors and

pitch errors that are larger than a threshold (IO), weighting of the errors

based on speech signal energy, weighting based on the duration of consecutive

6
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errors, weighting based on pitch frequency and pitch error, and context-

dependent error measurement. We also implemented two objective measures

previously reported in the literature. We correlated the data from each

objective measure with the mean subjective rating scores in each of eight

different conditions: For each of the four cases, LPC/Clear, HDV/Clear,

LPC/Noise, and HDV/Noise, we considered the subjective rating data in two

ways, once as the overall mean ratings over the complete database of 48

stimulus sentences (six speakers x eight sentences) and once as the more
L

detailed mean ratings over eight subsets of six stimulus sentences each. The

correlation values evaluated at the detailed level will be lover than those

evaluated at the overall level. From the correlation results, we selected a

set of 12 objective measures each of which produced consistently high

• -" correlation in all eight conditions. The mean correlation over the four . -

l coder/noise conditions ranged from -0.906 to -0.982 at the overall rating

U8 level and from -0.642 to -0.902 at the detailed level. The mean correlation - -

over all eight conditions ranged from -0.891 to -0.942. In contrast, the two

* previously reported measures produced high correlation in the clear and

- substantially lower correlation in the ABCP noise. The mean correlations over

the eight conditions were only -0.561 and -0.824 for those two measures.

-. Finally, our best overall objective measure produced correlations ranging from

-0.953 to -0.995 at the overall level and from -0.867 to -0.929 at the

7 *1
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detailed level. This measure also predicted nearly perfectly the rank

ordering of the five test pitch extractors by the subjective rating, in all

four coder/noise conditions.

1.3 Overview of the Report

In Chapter 2, we describe briefly the 2.4 kbit/s LPC and HDV coders used

in this work. Chapter 3 contains a description of the five pitch extractors

we chose to evaluate. In Chapter 4, we present the results of our initial -.

objective and informal subjective evaluation of the chosen five pitch

extractors, using Texas Instruments speech and hand-edited pitch databases.

In Chapter 5, we present a method for generating accurate, reference pitch and -

voicing data; this method uses subglottal signal recorded during speech with a

miniature accelerometer attached to the speaker's throat. Chapter 6 deals

with formal subjective evaluation of pitch extractors, and it contains a

description of the speech database we designed, the subjective test we used,

and the test results we obtained. In Chapter 7, we present the results of our

effort to understand the perceptual effects of pitch and voicing errors, as a

precursor to the development of objective measures for evaluating pitch

extractors. The topic of objective evaluation of pitch extractors is then

treated in Chapter 8. Finally, in Chapter 9, we present a suammry of this' "

8.
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work and discuss some issues that warrant further research.

9
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2. TWO 2.4 KBIT/S SPRUCE CODERS

Below, we describe briefly the 2.4 kbit/s LPC and RDV coders we used in

this project. Both coder simulations permit the option to read in pitch and

voicing data from disk files generated using separate pitch programs. This

option allowed us to generate coder output speech data for each of various

pitch extractors in a convenient manner.

2.1 LPC Coder

The analog input speech is lowpass filtered at 5 kHz, sampled at 10 kz,

and divided into non-overlapping frames of 20 mas duration for linear

prediction and pitch analyses. For every analysis frame, the following

quantities are transmitted using a total of 48 bits: a synchronization bit,

." voicing status (1 bit), pitch (6 bits, logarithmic quantization), speech

signal energy (5 bits, logarithmic quantization), and 12 log area ratios (35

bits total, optimal scalar quantization involving orthogonal transformation of

the log area ratio vector and nonuniform scalar quantization of transformed

parameters 11, 2J). The receiver uses the binary pulse/noise excitation for

---

=: ~the all-pole synthesis filter to generate the output speech ....

Ok
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-. 2.2 EDV Coder

A detailed description of the 2.4 kbit/s HDV coder algorithm is given

in [1, 2]. The RDV coder algorithm may be summarized as follows. In the

transmitter, the analog speech is lowpass filtered at 5 kHz, sampled at 10

kHz, and divided first into non-overlapping frames of 20 mas duration and then

into 9-frame blocks. A variable frame rate (MR) algorithm is used to select

and transmit only 6 frames of data every block, along with a block header (6

bits long) to identify the transmitted frames. For every frame selected by

the VFR algorithm, the following quantities are transmitted: a

synchronization bit, voicing status (1 bit), pitch (6 bits, logarithmic

quantization), speech signal energy (5 bits, logarithmic quantization), 12 log -
II

area ratios (37 bits total, optimal scalar quantization), and 3 selected

spectral deviations (2 bits each) between the log spectrum of the speech

signal in the frame and the log spectrum of the all-pole model. These

quantities are quantized, coded, partially error-protected, and transmitted

across the channel. Error protection is provided by sending the block header

in 3 copies, sending the frame voicing bit in 5 copies, and using 3 Haming

(7, 4) codewords per transmitted frame to protect 12 selected bits of the

parameter data. At the receiver, the data for the untransmitted frames are

regenerated by linear interpolation between adjacent transmitted frames. The

"-" " -".. .". ,

;., , •. .. ".
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output speech of the coder is synthesized, pitch-synchronously for voiced

frames and every 10 ma for unvoiced frames, by generating the excitation

signal using the spectral deviations and applying it to the all-pole synthesis

filter.

I+

The ANDF-DYPTRACK pitch algorithm used in the HDV coder algorithm

produces pitch estimates that are already quantized to one of 60 levels. The

HDV coder program, therefore, did not quantize the pitch. For investigating

the use of other pitch extractors in the HDV coder, we modified the original

HDV coder program by adding provisions to quantize pitch using 6 bits. We

used a pitch coding range of 20 to 156 samples or 64 to 500 Hz, which is about

the same range used in the ANDF-DYPTRACK method. We quantized the log pitch

using a method developed at BBN, which makes effective use of the quantization

levels at the small pitch period end [5].

12
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3. FIVE PITCH EZrMCTO.-

* Extraction of pitch and voicing forms an important part of a variety of

speech processing systems. As testimony to this fact, literally hundreds of

algorithms have been reported in the literature for extracting pitch and

I_ voicing. For a detailed survey of these algorithms, the reader is referred to

the book [6]. Most algorithms for extracting pitch and voicing have three

components: preprocessor, basic extractor, and postprocessor. The basic

p ' extractor performs the actual measurement of pitch and voicing. The function

of the preprocessor is to process the input speech signal with the goal of

simplifying the foregoing measurement task. The distribution of the algorithm

complexity between the preprocessor and the basic extractor varies over

individual algorithms. The postprocessor smooths or detects and corrects

- ,. ~possible error* in the extracted pitch contour. ..

From a review of the existing pitch extractors, we chose for our

comparative evaluation work five algorithms that are described briefly in this

chapter. Our choice was governed to some extent by our attempt to include as

• :.. many different pitch and voicing extraction approaches as possible and to a

6% large extent by the ease of transportability of the algorithm implementation

to our VAX-11/780 computer (running under VKS operating system). Of the

13
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chosen five algorithms, one is a time-domain algorithm (Gold); one uses the

so-called average magnitude difference function (AMDF-DYPTRACT); one uses the .7

power spectrum (Harmonic-Sieve); and two use the cepstrum (ILS and JSRU

algorithms). The ANDF-DYPTRACK and ILS algorithms were already available on

our computer. To bring up the other three algorithms on our computer, we

obtained the magnetic tape copy of the working programs from the respective

authors or their associates and made only minor changes as described belov.

In our installation, each pitch program accepts as input a speech waveform

- file and provides as output a frame-by-frame pitch data file containing zero

for unvoiced frames and pitch period in number of samples for voiced frames.

3.1 ANDF-D1PTU2CK Algoritbm

As noted above in Section 1.1, the A1MDF-DYPTRACK algorithm is used in the

U.S. Government standard coder LPC-10 [3] and in the RDV coder we developed as -

part of an earlier project [1. 2]. This algorithm computes an estimate of the

pitch for a frame by locating the minimum of the so-called average magnitude

difference function (ANDF) and uses a dynamic-programming-based tracking

(DYPTRACK) method to refine and smooth the computed pitch estimates. We shall

refer to this algorithm by the abbreviation A D"D.

14
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As preprocessing, the AMDFD algorithm lopass filters the input speech at

800 Hz and spectrally flattens the filtered signal by passing it through a

second-order linear prediction inverse filter. An estimate of the pitch

period is determined by computing the AMDF function for the inverse-filtered

signal over a set of sixty lags (over the range of 20 to 156 samples) and

identifying the lag at which the A1DF function is minimum. Notice that this

pitch estimation process involves an inherent quantization as it allows only

sixty lags. The voicing detector uses an energy measure, a zero-crossing

count, and the maximum to minimum ratio of the ANDF function. As

postprocessing, the pitch and voicing results are smoothed and corrected by a

dynamic programming algorithm, which introduces two frames of delay. -

* We believe that the Fortran AMDFD program we have on our computer

corresponds to Version 44 of the LPC-10 coder. The AMDFD algorithm as

implemented in LPC-10 has been '"ard-wired" to operate under the conditions of

LPC-10 such as 8 kHz sampling rate and 22.5 mas frame rate. Also, the

algorithm extracts one pitch value and two half-frame voicing decisions each

frame. Our simulations of both the HDV and LPC coders accept only one voicing

decision per frame. Furthermore, some of the decision parameters used in the

algorithm are adaptive in that their values evolve continuously in time.

Thus, the algorithm will not, in general, produce satisfactory results if one

15
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uses it on a one-sentence-at-a-time basis rather than for continuous speech

processing. To resolve these problems and to be able to use the algorithm for

different frame rates and two sampling rates (8 ad 10 kHz), we made several

modifications to the algorithm as part of an earlier project. These

modifications are described in detail in the report (1].

3.2 Gold Pitch Detector

In this method [7], a series of measurements are made on the peaks and -

valleys of a lowpass-filtered speech signal to produce six separate functions.

Each of these six functions is processed by a simple pitch .estimator. The

resulting six pitch period estimates are analyzed using a decision logic to - .

determine the pitch period. The decision logic is set up to give one pitch

period estimate per frame period. The degree of agreement among the six

simple pitch detectors is a parameter that is used in making the voicing

decision. We note that the parallel processing method of Gold and

Rabiner [81, which has been used in other studies comparing pitch and voicing

extraction algorithms [9, 10], is a simplified version of the Gold pitch
S

detector.

The version of the Gold pitch detector used in our project was

16 3
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implemented in C by Mr. E. Singer of Lincoln Laboratory. This version

included a 3-point median smoothing of the extracted pitch data. Initially,

this program required 8 kHz sampling rate and 22.5 ms frame rate. Upon our

request, Mr. Singer provided us with a modified version to use either 8 kHz or

10 kHz sampling rate and any user-specified frame rate.

3.3 Harmonic-Sieve Method

In this method [111, input speech is lowpass filtered to a bandwidth of

2.5 kHz. Power spectrum of the filtered signal is computed over a 40-ms

analysis frame. Peaks are located on the power spectrum as potential

harmonics of the fundamental frequency. Using a harmonic-sieve procedure, the

algorithm determines the harmonic pattern and the associated pitch frequency

that best match the measured spectral peaks. The extent of the match is used

gin making the voicing decision. The harmonic-sieve (R-S) method uses no

postprocessing. The authors of the H-S method argue that their method is

" optimal in that it is based on Goldstein's theory of pitch perception in

complex sounds [121.

We received a magnetic tape copy of a Fortran implementation of the H-S

method from Mr. L.F. Willems of the Institute for Perception Research,

17
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Eindhoven, The Netherlands. This program assumes 10 kHz sampling rate and 100

frame/s analysis rate. We modified the program to use an analysis rate of

either 100 or 50 frames/s.

3.4 ILS Cepstral Algorithm

This algorithm is part of the Signal Technology Inc. Interactive

Laboratory System software package (13]. Input speech is preemphasized, and

the log magnitude spectrum is computed. A tapered cosine window is applied to

the log magnitude spectrum before computing the cepstrum. The cepatrum is

weighted using a cepstral multiplier, and the peak of the weighted cepstrum is

located. The cepstral lag corresponding to the peak gives the estimated pitch

period. Voicing is extracted using a statistical linear discriminant function

approach involving the following quantities: the cepstral peak value, the

number of zero crossings in the frame, the first reflection coefficient

resulting from linear prediction analysis of input speech over the frame, and

the linear prediction residual signal energy. A heuristic method is used to

smooth the extracted pitch over 3 frames; this method produces a delay of I

frame. In our work, we used the default parameter settings given in the ILS-

package.

18
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" 3.5 JSRIU Cepstral Algorithm

S.This algorithm was developed at the Joint Speech Research Unit,

Gloucestershire, U.K. [14]. In this algorithm, input speech is sampled at 10

kHz, preemphasized using simple differencing (6 dB/octave preemphasis), and

analyzed over 512-sample frames at a rate of 100 frames/s. Analysis includes

a number of steps: Hamming windowing; power spectrum computation; computing a

ratio of low-frequency power (40-1200 Hz band) to high-frequency power

(2.7-3.9 kHz band); log power spectrum computation; "conditioning" the log

power spectrum by replacing the values at the high-frequency end (above about

4.1 kHz) with a constant equal to the average over the baseband (20 lz to 4.1

L kHz) and by eliminating excessive dips in the baseband below this average;

cepstrum computation from the conditioned log power spectrum; smoothing the

cepstrum using a 3-point FIR filter with weights 1, 2, and 1; locating the

peaks in the cepstrum; and finding the location and values of the two largest

cepstral peaks. The next step involves the use of a set of heuristics in

making the voicing decision and in obtaining a pitch value for the frame under

consideration. The heuristics examine the size of the cepstral peaks and the

low-frequency to high-frequency power ratio mentioned above; check for

possible pitch frequency doubling or halving; and ensure consistency with the

pitch and voicing data over the past two frames. Finally, the algorithm

19
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declares any isolated unvoiced frame as voiced.

For the 100 frame/s analysis rate, the algorithm introduces five frames

of delay: three frames of delay caused by an offset of the input speech frame

from the center of the 512-sample analysis interval, one frame of delay

introduced in the heuristics module, and another frame of delay caused by an

isolated unvoiced frame check. Two additional frames of delay are introduced

for the voicing state to allow for smoothing in the JSRU synthesizer. We

removed the latter two-frame delay of the voicing state and compensated. for

the five frames of delay (by shifting) prior to output to a pitch file. We

also modified the JSRU program to allow the use of either 100 frame/s or 50

frame/s analysis rate. For the latter analysis rate, the delay introduced by -

the algorithm is only three frames.

20
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4. INITIAL INVESTIGATION OF THE FIVE PITCH EXTRACTORS

U The purposes of our initial investigation of the five pitch extractors

reported in the last chapter were to ensure the proper operation of the

individual pitch extractors, devoting attention particularly to the changes ye

made to the original algorithms; to examine carefully the delay introduced by

each algorithm; to get some initial reading on the comparative performance of

the five algorithms; and to conduct some preliminary testing of the use of

. these pitch and voicing algorithms in the LPC and HDV coders. For this

investigation, we used a subset of the speech database developed by Texas

Instruments (TI), as described in Section 4.1. We also used several simple

- objective error measures given in Section 4.2. The results of our objective

and subjective tests are presented, respectively, in Sections 4.3 and 4.4.

4.1 TI Speech and Pitch Databases

We obtained from TI a speech database of a total of 58 sentences from 32

male and 26 female speakers (one sentence per speaker) ranging in age from 6

to 87 years [10]. Speech was digitized at 12.5 kIz. We also received from TI

reference pitch files (10 ms frame) for these 58 sentences, which were

obtained by hand-editing the pitch data generated using the ILS cepstral pitch

extractor.

21
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For use in our investigation, we selected a subset of 12 sentences from

speakers ranging in age from 7 to 80 years, and digitally resampled the 12.5

kiz waveform files at 10 kHz using the interpolation-decimation approach. To

check the accuracy of the TI hand-edited pitch we examined waveform displays

of the 12 sentences. We compared the voicing status and pitch period values

as determined by visual inspection with the TI pitch data. We found that the

TI data gave good estimates of pitch period values in steady state voiced

regions and represented the pitch dynamics reasonably well when pitch changed

rapidly. We also noted that the TI voicing decisions were correct for all

obviously voiced and unvoiced regions. At transitions, the TI data had a

tendency to extend voicing somewhat. Although a few of the voicing decisions

could be questioned, we concluded that the TI hand-edited pitch data provided

reasonably accurate pitch period estimates and voicing decisions.

For the objective and subjective evaluations reported in Sections 4.3 and -

4.4, we used only 6 of the chosen 12 sentences. Table 1 gives the five

distinct sentences (one sentence spoken by two speakers), and Table 2 gives

speaker details.

For the full 58-sentence database, we also obtained from TI the pitch

files generated using their integrated correlation pitch program [151. We

22
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1. Very few angels are always wise and pure.

2. A great future is always provided the student of music.
3

3. Almost everything involved making the child mind.

4. The view of the present will largely be reached in the following
century.

5. The wife's figure had already adjusted by itself.

TABLE 1. Speech materials used in the chosen subset of the TI database

Spoken

Sex Ae Sentence #

Male 24 1
Male 36 5
Male 42 3
Female 33 4
Female 36 5
Female 40 2

TABLE 2. Details of speakers included in the chosen subset of the TI
£ database.

could not get their pitch program for proprietary reasons. This pitch

algorithm, which we refer to as the TI pitch algorithm, uses an adaptive I-

. pole filter for preprocessing the input speech, a modified correlation

* technique for extracting candidate pitch values, and a dynamic progrming

- technique for both making voicing decision and obtaining a smoothed pitch

23
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estimate [151. We included the TI pitch algorithm in some of our

investigations, primarily for comparison purposes.

4.2 Pitch and Voicing Error Measures

In objective evaluation of a pitch extractor under test, we compare the

test pitch data obtained using this extractor with the reference pitch data on

a frame-by-frame basis. A comparison of the test pitch value with the

reference pitch value for any given frame indicates one of four possibilities

listed below.

1. Both the test and the reference pitch values are zero indicating
that the frame was declared unvoiced in both test and reference
pitch files. For this case, no error has occurred.

2. The reference pitch value is non-zero, but the test pitch value is .

zero. Thus, a voicing error has occurred, and we denote this error
as a voiced-to-unvoiced (VUV) error.

3. The reference pitch value is zero, but the test pitch value is non-
zero. Thus, a voicing error has occurred, and we denote this error
as an unvoiced-to-voiced (UVV) error.

4. Both the reference and test pitch values are non-zero. For this
case, we compute the pitch error between the two values.

For the fourth case, we classify the pitch error as a 2ross pit.ch ,.

if the magnitude of the quantity 100(FT-FR)/FR exceeds a prespecified

24
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* threshold, where FT and FR are, respectively, the test and reference pitch

frequency in Hz. In our investigation, we have used a threshold of lO in

deciding gross pitch errors. A pitch error that is not a gross pitch error is

called a fe pitch error.

We developed an interactive program, called PEVAL (short for pitch

evaluation), to compare test pitch data with reference pitch data and compute

pitch and voicing error statistics. PEVAL uses our command interpreter

software so that the user may interactively control the execution of various

components of the program. The PARAMITER command allows the user to set

various parameter values, and the COMPARE command allows the user to compare

the test pitch data with the reference pitch data for one utterance or a group

of utterances, by providing as input one or more pairs (test, reference) of

pitch files. (For additional PEVAL commands, see Chapter 8.) We note that

the frame sizes of the reference and test pitch files need not be equal. In

fact, PEVAL performs the comparison at any user-specified frame size by

converting, if necessary, the reference and test pitch data to correspond to
r

this frame size via linear interpolation of log pitch.

.- PEVAL computes the count of each of the three types of errors, VUV, UVV,

and gross pitch errors, as a percentage of the total number of frames used in

25
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the comparison, and determines the toa error by adding the three

percentages. For fine and gross pitch errors, the progra computes the mean

and standard deviation. Also, for gross pitch errors, the program identifies

pitch frequency doubling and halving errors and computes the total number of

each. If the magnitude of the difference between the reference pitch

frequency and half (twice) the test pitch frequency, expressed as a percentage

of the reference pitch frequency, is less than a threshold (we used 10Z), the

pitch error is classified as pitch frequency halving (doubling). PEVAL

computes various other statistics including duration of a consecutive

occurrence of a given error type, location of error (voiced region, unvoiced

- region, voiced-unvoiced transition, and unvoiced-voiced transition), and

missing voiced or unvoiced regions. (See Chapter 8 for more details.)

The f ive basic error measures (percent VUV error, percent UVV error,

U percent gross pitch error, and mean and standard deviation of f ine pitch

error) have been previously used for objective evaluation of pitch

extractors (9). However, we point out that pitch error is computed in (91 as

difference in pitch period in number of samples between test and reference-

cases and is compared against a threshold in deciding if it is a gross pitch

*error. We believe that using the percentage pitch frequency error as

I described above is perceptually more relevant. Also, this method allows us to

26
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compare directly two pitch files generated using different speech sampling

rates.

4.3 Objective Evaluation

We processed the 12 TI sentences mentioned in Section 4.1 through each of

the five pitch extractors, using 10 klz sampling rate and 10 as frame size

(i.e., a frame rate of 100 frames/a), and evaluated the resulting pitch data

* using PEVAL with TI hand-edited pitch data as reference. We found that the

..* .pitch and voicing errors given by PEVAL were considerably higher for the

Harmonic-Sieve and Gold pitch extractors than for the other three. This

result prompted us to check if we were using the correct time delay for each

pitch extractor. To do this task, we modified PEVAL to include the option of

skewing the test pitch file with respect to the reference pitch file by a

prespecified number of frames. If there was an unaccounted delay being

introduced by the pitch extractor, the total error (sum of VUV, UVV, and gross

.pitch errors) should decrease as this delay is removed. The results of this

test on the various pitch extractors are shown in Fig. 1. (A negative skew

refers to removing frames from the beginning of the test file, thus shifting

the test file backward with respect to the reference file.)

27
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7. FIG. 1. Total error plotted as a function of the number of frames of skew
between the test and the reference pitch files, for each of five
pitch extractors.
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We see from Fig. I that the plot for the Harmonic-Sieve method has a

minimum between -1 frame and -2 frames. We examined the Fortran code of this

method and found that the 40-ms analysis interval used contained the current

10-ms frame and the three past frames. If we associate the extracted pitch

with the center of the analysis interval and the current frame's pitch with

its center, we find a delay of 15 ms or 1.5 frames. As PEVAL uses only

integer number of frames, we decided to use a 20 ms or two-frame delay. We

note that the documentation of the Harmonic-Sieve method did not mention about

any delay.

Referring to Fig. 1, we find that the Gold algorithm shows a minimum at

-2 frames. From a discussion with the author of the program (E. Singer), we

identified the two frames of delay as being caused by lowpass filtering and

median smoothing.

Notice from Fig. 1 that all other pitch extractors yield a minimum at a

skew of 0 frames, which indicates that we had correctly accounted for their

S- delays. (The plot for the JSRU method, not shown in Fig. 1, also yielded a

minimum at 0 frames of skew.) The compensation of the foregoing delay reduced

the total error by about 5% for the Harmonic-Sieve method and by about 101 for

the Gold algorithm.

29
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With the time delay correctly compensated as discussed above, we

evaluated, using PEVAL over the subset of six TI sentences given in Section
"-I

4.1, all six pitch extractors: AMDFD, Gold, H-S, ILS, JSRU, and TI. The

resulting various error measures are given in Table 3. Except for fine error

mean, all other errors are each expressed as a percentage over the total

number of data frames considered (see Section 4.2). Total error is again the

sum of VUV, UVV, and gross errors.

30
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* .Error ANDFD Gold jjILS JSRU L

Percent VUV
*Error 2.81 7.60 9.44 3."6 7.26 0.79

* Percent UVV
Error 1.45 2.29 0.99 3.36 2.10 4.67

Percent Gross
Error 6.77 2.93 5.17 5.82 1.90 6.36

*Total Error 11.03 12.82 15.60 12.64 11.26 11.82

* Pitch
* .Doubling 0.40 0.00 2.43 0.10 0.00 0.05

Pitch
Halving 0.35 1.54 0.05 2.30 1.10 2.68

Fine Error
Mean 0.52 1.13 -0.01 -0.33 0.59 0.83

TABLE 3. Pitch and voicing error results obtained over the six TI
sentences, f or six pitch extractors.
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From Table 3, we see that over the six sentences considered, the AMWFD

algorithm produced the least error and the Harmonic-Sieve method produced the

most error. The JSRU algorithm, which was only slightly worse than ANDFD,

yielded the least gross pitch error. ANDFD provided the least voicing error

(sum of VUV and UVV errors).

To test the effect of smoothing, we applied a 3-point median smoother to

the pitch data from the various pitch extractors and reexamined their errors .-

using PEVAL. The median smoother was designed to work continuously on all

frames regardless of voicing boundaries and thus was able to correct one frame

isolated voicing errors. The smoothing did not decrease the overall error for

any of the algorithms by more than 0.5%, and in the cases of the Harmonic-

Sieve and Gold algorithms, the error was actually increased by approximately

O.11. A possible reason for the increase in the Gold algorithm is that it

already uses 3-point median smoothing as noted above.

4.4 Subjective Evaluation

We performed informal listening tests of the six TI sentences of speech

synthesized using the HDV coder with the pitch and voicing data from each of

the six pitch extractors. Judging from the overall speech quality, we felt
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.. that the A1DFD algorithm was the best, closely followed by the JSRU, TI, ILS,

and Gold algorithms. The Harmonic-Sieve method produced the worst quality;

specifically, both voicing and pitch doubling errors were quite audible. The

ILS algorithm produced all of the pitch halving errors in two sentences, which

were quite evident in informal listening. For the JSRU method, the HDV coder

speech sounded quite natural during correctly voiced regions, but the voicing

errors significantly degraded the overall quality. In general, the presence

of UVV errors degraded the speech quality less than did the presence of VUV

L
errors. The reason for this result is that the frame energy associated with

. UVV errors is in general lower than that of the VUV errors.
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5. A METHOD FOR GENERATING RZFZlUCE PITCH DATA

0, In this chapter, we review Henke's FPRD (short for fundamental period)

algorithm for extracting accurate pitch from the subglottal accelerometer

signal recorded during speech (Section 5.1). We then describe a conversion

routine we developed to extract voicing decision from FPRD output data and to

convert pitch-synchronous FPRD pitch data to time-synchronous data as required

by our LPC and HDV coders and as required for objective evaluation (Section

5.2). The results obtained using this modified FPRD program on the speech

signal are presented in Section 5.3.

5.1 "ElD Algorithm

This algorithm was developed at MIT by Dr. W. Henke [161. In this

method, a two-channel tape recording is made of the speech signal transduced

- .by a microphone and the subglottal signal transduced by a miniature,

- lightweight accelerometer, which is attached with double-sided adhesive tape

to the speaker's throat on the midline in the suprasternal notch and just

- - below the glottis. We used the Vibro-Meter Corporation (formerly BB

Instruments Corporation) Model 501 accelerometer, which weighs less than 2

grams. The FPRD method uses the accelerometer signal to extract accurate

pitch data. Figure 2 displays the speech signal and the accelerometer signal,
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during phonation of the vowel [a]. From the figure, it is clear that the

subglottal signal displays the individual pitch periods (albeit shifted by

about 1 mas relative to the speech signal, because of propagation time delay),

without the resonances of the vocal tract. It has been found that the time of

the major negative-going zero crossing in the subglottal signal, shown by

arrows in Fig. 2, provides a stable segmentation point for delimiting

individual pitch periods [16). Renke refers to the rapid change around this

zero crossing from outward to inward acceleration imnediately following the

maximum acceleration as the "flyback stroke". The flyback stroke occurs at or

shortly after the instant of glottal closure.

Given the accelerometer signal, the FPRD method locates the zero crossing

associated with the flyback stroke by identifying signal maxima and minima and

using heuristics, and provides pitch-synchronously a pitch value and a voicing

confidence level. The latter quantity takes the integer values 1 to 4, with 1 -

indicating least confidence and 4 indicating most confidence.

We make several observations. First, the FPRD program was developed -

originally for making pitch period and jitter measurements [16]. Second, this

method is being used in a computer-based system of speech-training aids for

the deaf 117, 181. Experience gathered in this application has suggested that
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the FPRD algorithm operates reliably over a range of subjects including adult

males, adult females, and children. Third, notice that the FPRD algorithm

does not provide the binary (voiced/unvoiced) voicing decision required by

most narrowband vocoders. Fourth, the accelerometer is essentially

insensitive to acoustic background noise at low frequencies and only mildly

sensitive at high frequencies. This property implies that the FPRD algorithm

can be used to extract accurate pitch even in acoustic background noise. In

fact, as part of another BBN project, the accelerometer has been used in

conjunction with a noise-cancelling microphone to transduce noise-imune

speech signal (19, 20]. In the same project, it has been found that of the

various accelerometer positions on the head and neck, the position just below

the glottis provides the highest spectral amplitude at frequencies around the

pitch frequency, which makes this position best for pitch extraction [19, 201.

We obtained a listing of the source FPRD program from Henke. The program -

was in a structured high-level processor language that was not available to

us. Fortunately, we received a Fortran version of the FPRD program from

C. Gillman at the University of Wisconsin. We brought up this program on our

- VAX/VMS computer by making the required Fortran syntax changes and by

* incorporating our file input/output software. The FPRD program requires the

user to specify two input parameters: the speaker's average pitch frequency
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in Ez and the accelerometer signal polarity (see Section 5.2). We initially

I tested and debugged the program using the speech signal as input, even though

the program was designed for the subglottal signal input. We processed the

same speech file through our program and through the original FPRD program at

MIT. The outputs from the two runs were found to be identical.

5.2 Voicing Decision and Time-Synchronous Pitch

rnWe interpreted the voicing confidence level output from the FPRD program

as follows: A value of I indicates a "definitely unvoiced" period; a value of

*4 indicates a "definitely voiced" period; and values of 2 and 3 indicate

I Itransition periods. We mention that for a confidence level of 1, the FPRD

program provides as pitch estimate the average pitch period. (Recall that the

average pitch frequency is one of the user-specified inputs.) To check the

i r validity of our interpretation given above and to develop a technique of

assigning a binary voicing status to the transition periods, we processed

through the FPRD program five sentences of the accelerometer signal from a

0 male speaker. The accelerometer signal and the speech signal were previously

* recorded simultaneously on a two-channel tape recorder and digitized using our

two-channel AID facility as part of another contract effort at BEN [19, 201.

~~ - A visual display of the accelerometer signal and the speech signal was -
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examined to determine the location of the glottal events specified by the FPRD

program output and to identify the correspondence between the accelerometer

signal and speech signal events. An example of the display is shown in

Fig. 3. The waveform at the top of the figure is a section of the

accelerometer signal, and the corresponding section of the speech waveform is

shown at the bottom of the figure. The FPRD program positions the epoch

boundary at the zero-crossing of the "flyback stroke". The arithmetic sign of

the slope of the "flyback stroke" in the accelerometer signal determines the

signal polarity parameter referred to earlier in Section 5.1.

The results of the foregoing investigation confirmed the validity of our

interpretation of confidence levels 1 and 4 as, respectively, unvoiced and

voiced. For level 4 cases, the pitch estimates from FPRD were found to be

quite accurate. Also, we identified a simple method of assigning a binary

voicing status to the transition periods: Declare all transition periods that -

occur in the middle of an unvoiced region (a region with consecutive

confidence levels of 1) as unvoiced and declare all other transition periods

as voiced. The voiced transition periods can thus occur immediately

preceding, succeeding, or in the middle of a voiced region (with consecutive

confidence levels of 4). We hasten to point out that this simple rule worked

well over the five sentences we investigated, but caused some voicing errors

39

.......................................................... " ...



Report No. 5726 Bolt Beranek and Newman Inc.
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Fig. 3 Waveforms of the accelerometer and speech signals.
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over a larger speech database used in our formal subjective tests.

Refinements to the voicing decision rule are given in Section 6.2.

We incorporated into the PEVAL program a subroutine to determine the

binary voicing decision for the FPRD pitch and to convert the pitch-

synchronous pitch data to time-synchronous (or frame-by-frame) data at a frame

rate specified by the user. This subroutine determines the pitch value for a

frame as the pitch-synchronous pitch period that occurs at the center of the

frame. Notice that it does not perform any interpolation. We refer to the

resulting time-synchronous FPRD pitch data with binary voicing decision as

FPRDM (M stands for 'modified") pitch data. It is the FPRDH pitch that we

used in all our subsequent subjective and objective evaluation work.

We processed the foregoing five sentences of speech through the HDV coder

twice, once using the AMDFD pitch and once using the FPRDM pitch. Through --

informal listening tests, we found that the FPR.DM pitch produced more natural-

sounding speech than did the AMDFD pitch.

P -
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5.3 Performance with Speech Signal as Input

* To test how vell the FPRMI progrm extracts pitch with speech signal as

input, we processed the six TI sentences (see Section 4.1) through the FPRDM

program with 10-mr frame size and compared the resulting pitch data, using

PEVAL, with the reference TI hand-edited pitch data. The error results are

given in Table 4.

Error PD

Percent VUV Error 15.53

Percent UVV Error 0.05

Percent Gross Error 3.42

Total Error 19.00

Pitch Doubling 0.00 ""

Pitch Halving 0.10

Fine Error Mean 0.95

TABLE 4. Pitch and voicing error results obtained over the six TI
sentences, for FPRDM.

Comparing the results given in Table 4 with those given in Table 3 for

six other pitch extractors, we find that the VUV error was unacceptably large
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for FPRDM. All other error measures were in fact quite low for FPRDM. To

examine the VUV errors caused by FPRDM in more detail, we observed visual

displays of several speech waveforms and noted the locations of voicing

transitions. The observed transition locations were compared with the pitch-

synchronous voicing confidence level outputs of the FPRD pitch extractor.

These comparisons showed that the FPRD pitch extractor yielded a confidence

level of I or a definitely unvoiced decision for several moderate and low

energy regions of voiced speech. We synthesized several sentences with the

HDV coder using the FPRDM speech-derived pitch as input. Informal listening

tests shoved that the speech for FPRDM pitch was more natural in voiced

regions than speech for AMDFD pitch. However, many raspy and hoarse-sounding

effects were present in the speech for FPRDM pitch confirming the presence of

obvious voicing errors. The overall speech quality produced by the FPRDN

pitch was better than that produced by the Harmonic-Sieve pitch, even though

the total error was larger for FPRDM than for Harmonic-Sieve (19.0 vs 15.6).

We emphasize that the FPRD program was not designed to usZ the speech

signal as input. We believe that the performance of the 1PRDM program on the

speech signal can be improved substantially using a better (perhaps a

separate) voicing detector.
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.- 6. FORMAL SUBJECTIVE EVALUATION OF PITCH EXTRACTORS

I Below, we present in Section 6.1 our design of the speech database for

use in subjective and objective evaluation of pitch extractors. In Section

6.2, we describe the generation of the reference pitch data using FPRDM and

the test pitch data using the five pitch extractors reviewed in Chapter 3.

The design of the subjective tests is treated in Section 6.3, and the results

from the subjective tests are presented in Section 6.4.

* "6.1 Speech Database

The acceptability of a pitch extractor for use in the LPC or HDV coder

depends on the frequency with which it generates pitch or voicing errors that

" degrade the perceived quality of the coder output speech. For reliable and

-. efficient testing of pitch extractors, the speech database used must therefore

contain a substantial number of speech events that are likely to generate

pitch and voicing errors. Test utterances that fail to create pitch and

voicing errors do not provide useful data for classifying and comparing

candidate pitch extractors, and should therefore be excluded from the

database. In developing a speech database, we must also use properly chosen

speakers. The pitch range of the speakers is an important factor (21). Also, ."-

it has been our experience and the experience of others that some voices
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present severe difficulties to pitch extractors.

To determine the speech utterances and speakers that are likely to

generate pitch and voicing errors, we processed speech through the real-time

LPC-10 coder running on the MAP-300 array processor [4] and evaluated the

presence of pitch and voicing errors by listening to the coder output. As

speech material, we used a subset of a phoneme-specific database of about 120

sentences developed as part of an earlier BBN project [5]. We used a number

of speakers and three listeners in this investigation. Sentences containing

unvoiced consonants caused most pitch and voicing errors: presence of

unvoiced stops was particularly effective in causing errors. Sentences with

only voiced consonants caused the fewest errors. Using the results of this

test, we chose a set of 51 sentences. We selected 12 male speakers and 12 , -

female speakers with a wide range of pitch. We recorded the accelerometer

signal and the speech signal using a two-channel tape recorder as each of the

24 speakers read the 51 sentences.

To begin selection of the final database, we first informally listened to .

all of the sentences spoken by all of the speakers processed through the real- ,

time LPC-10 coder. On the first pass, we selected, for each speaker, the ' ,..

sentences that caused noticeable pitch or voicing errors. On the second pass,
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II

ye evaluated the severity of the errors for only the sentences selected in the

first pass. From this information we vere then able to select the six

UI

speakers who produced the most (and most severe) errors. An additional

criterion ye used in selecting the speakers vas to span a wide range of pitch,

from low-pitched males to high-pitched females. The six speakers ye selectedII

arer 3 o female (oW, Ber, and Newm) ann. 3'ae ADadP)

speakers. We also selected sentences each containing only specific types of

speech sounds, in the hope that these sentences would cause different types of

pitch errors to occur. In addition, we selected, for each speaker, two to

four other sentences that caused errors specifically for that speaker. The

final database we selected contains a total of 50 sentences. The first six

sentences given in Table 5 were recorded from all six speakers and the

remaining sentences were recorded only from the speakers identified within

parentheses.

After selecting the database, we digitized the speech and accelerometer
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Sentence Tvge o1 Sounds

1. Why were you away a year, Roy? Voiced
2. Patty cut up a potato cake. Unvoiced stops
3. Which tea party did Baker go to? Stops, affricates
4. Chip took a picture. Unvoiced stops, affricates
5. Whose shaver has three fuses? Fricatives
6. A thickset officer pitched out her hash. Unvoiced
7. Take a copy to Pete. (AW) Unvoiced stops
8. Pat talked to Kitty. (AWLW) Unvoiced stops
9. Keep quiet at church. (BF,MA,PH) Unvoiced stops, affricates

10. Katie typed a paper. (BF,M&) Unvoiced stops
11. Peter took out a potato. (DG,LW) Unvoiced stops
12. Teacher taped up a packet. (DG) Unvoiced stops, affricates
13. Teacher patched it up. (DG) Unvoiced stops, affricates
14. Quite quiet at church. (PR) Unvoiced stops, affricates
15. A thief saw a fish. (PH) Fricatives

TABLE 5. Sentences used in the speech database.

signals for the selected sentences using a two-channel digitizing technique,

which preserved the time-alignment of the two signals. The resulting waveform

files were then edited and split into two files: one containing the speech

signal and the other containing the corresponding accelerometer signal.

We then proceeded to add digitally ABCP noise to clean speech sentences

to generate the noisy speech database. From the sponsor-supplied tape

containing sentences of speech recorded in an ABCP noise environment, we

digitized the noise-only parts and digitally "spliced" these together to
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obtain one long noise file with about 7.5 seconds of noise. We listened to

this file to verify that it did not contain any obvious repetitious patterns

or pops and clicks because of the splicing process. The noise file sounded

about the same as we heard on the sponsor's tape.

We added the ABCP noise to individual speech sentences to obtain a

prespecified signal-to-noise ratio (SNR), as follows. We computed the average

per-sample energy of the noise. For speech, we computed per-sample energy in

10-ms frames over the given sentence, identified the frames with energies

above the 90th percentile, averaged the peak energy over these frames, and

subtracted a constant (we used 5 dB) to obtain a robust estimate of theI
average speech signal energy. This method is robust as it is not as sensitive

*-i to the presence of pauses and silence in speech as is the overall average "

energy. From the per-sample average energies of the noise and the speech

files, we scaled the noise so as to produce a specified SNR over each

sentence.

"- We added the noise to several utterances from our speech database with

various SlR's and performed informal listening tests to decide which SNR best

matched the SNR of the sentences on the sponsor's tape. We found that an SNR

of 7 dB gave the best match. Upon adding noise to several test utterances we
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noted that the adjustment of the noise level for each utterance, to maintain

the SIR of 7 dB, caused small changes in background noise from sentence to

sentence that could be perceived in informal listening tests. In an actual

ABCP noise environment, the noise level would not change as speaking levels

changed. We therefore decided to add a fixed noise level to all sentences.

This fixed level was obtained by averaging the noise levels required to

produce a 7 dB SNR for a number of sentences. We thus generated a 50-sentence

ABCP noise-added speech database.

6.2 Generation of Reference and Test Pitch Data

We generated pitch files for the two sets of 50 sentences of speech

corresponding to the clear and noisy databases, for each of the five pitch

extractors: ANDFD, Gold, Harmonic-Sieve, ILS, and JSRU. We used a frame rate

of 50 frames/s required by the 2.4 kbit/s LPC and MDW coders. We then . -

generated the pitch-synchronous pitch data using the FPRD program on the

accelerometer signal files for the 50 sentences of speech, and converted the

data, using PEVAL, to time-synchronous pitch and voicing data (FPRDN),

initially at 10-ma frame size. We treated the resulting FPRDM pitch data as

reference in both clear and noisy cases; this is quite reasonable as the

accelerometer is essentially insensitive to acoustic background noise. In the
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rest of this section, we describe how we carefully examined the FPRDM pitch

data and made necessary refinements. For each of the 50 sentences, plots of -.

the speech signal, accelerometer signal, and the frame-by-frame pitch

estimates were examined to locate any pitch and voicing errors. High

resolution plots were made of voiced regions where the pitch changed rapidly - -

and also of several steady state voiced regions. These plots were used to

; check the accuracy of the extracted pitch estimates. The confidence level +

output from the FPRD program and the binary voicing decisions made by our

conversion routine were compared with events in the speech and accelerometer

*signals. We also performed informal listening tests to compare the original

speech utterances with synthesized ones that were produced using the FPRDM

., pitch in the LPC coder. From these tests we concluded that the frame-by-frame

FPRDM pitch data was correct for 23 of the 50 sentences in our database. We

found at least one instance in each of the remaining 27 sentences where the

* rpitch accuracy or a voicing decision could be questioned.

The utterances that contained errors were reexamined to determine if

there were any common characteristics or patterns to the errors that could be

detected and corrected by modifications to our conversion routine. Although

* 'several types of errors were identified and techniques for correcting them

were devised, we were not able to develop, within the scope of this project, a

1 ' 50

.. . . .- 2 , . - - - - - - -



Report No. 5726 Bolt Beranek and Newman Inc.

fully automatic method for obtaining error-free frame-by-frame pitch and

voicing decisions from the FPRmI pitch data. Several of the refinements we

made to the conversion routine were implemented as options so the user could

select the correction techniques that were appropriate for the sentence under

examination. Three techniques for making refinements to the voicing decision,

discussed below, can be readily included in the automatic conversion routine.

The details of the error types and our correction methods are given below.

From our study, we found that accurate frame-by-frame pitch estimates

were obtained from the pitch periods classified as "definitely voiced"

(confidence level 4). Errors in the frame-by-frame pitch estimates were

obtained only when the transition state pitch periods (confidence levels 2 and

3) were used for frame estimates. Recall that our conversion routine

considers all transitions state pitch periods as voiced if they occur at the

beginning, at the end, or in the middle of voiced regions. The pitch values

associated with confidence level 3 were generally reliable; however, the level

2 pitch periods were not. Approximately half of the level 2 transition pitch

periods were in error. We modified our conversion routine to substitute the

previous level 3 or level 4 voiced pitch period value for each level 2 pitch

period that was declared voiced. This scheme worked well for transition state

pitch values that occurred in the middle of voiced regions, but was not
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* appropriate f or many of the transition state pitch periods at the end of

voiced regions. It was necessary to hand-edit the pitch estimates at the end

of several voiced regions.

Host voicing decision errors were caused by inappropriate classification

*of transition periods by our conversion routine. Regions declared as

*definitely voiced (confidence level 4) or definitely unvoiced (conf idence

level 1) were almost always correct. A majority of the voicing decision

* errors occurred when transition state pitch periods were at the beginning or

end of a voiced region. Three modifications were made to the conversion

routine to correct a number of the voicing decision errors. First, we noted

that if an isolated conf idence level of 1 existed at the end of a voiced

region followed by a sequence of three or more transition state pitch periods,

the transition periods and the isolated level I frame must be declared voiced.

K Second, we also noted that several short voiced regions were not detected by

the FPRDK program. Reexamination of the FPRD data showed that each of these

regions contained a consecutive sequence of three or more level 3 pitch

periods. A provision was added to our conversion routine to declare these

regions voiced. Third, we declared any isolated unvoiced frames as voiced

-with pitch taken from the immediately preceding frame. By application of

h these three correction methods, ye were able to correct approximately 801 of
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the voicing decision errors. The remaining voicing errors (about 25 in

number) were corrected by hand-editing the pitch files.

All pitch and voicing errors in the 27 utterances were corrected, either

by selectively applying the schemes described above or by hand-editing the

pitch files. The resulting FPRDN pitch data was used as reference pitch in

our subsequent work.

The above discussion might indicate that we made an extensive hand-

editing of the FPRIMK data. This is simply not true, as will be clear from the

facts presented below. First, as we mentioned above, 23 of the 50 sentences

did not require any corrections at all. Second, we used the PEVAL progrm to

evaluate the FPRDM pitch data before any corrections were made, with the

corrected FPRD14 data as reference. For a total of 8,290 10-ms frames analyzed

(82.9 seconds of speech), we obtained 93 VUV errors, 37 UVV errors, and 11 .

gross pitch errors including 1 pitch frequency doubling and 4 pitch frequency

halving errors, which represents a total error of only 1.7% errors. In

contrast, the five test pitch extractors produced over the six TI sentences

total errors in the range of 11 to 16% (see Table 3). (The errors were even

larger over our speech database. See Table 6 in Chapter 8.) Third, as we

mentioned above, three techniques to correct the errors in the voicing
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decision can be readily incorporated into the automatic conversion routine.

We implemented these techniques as part of our automatic conversion routine

and evaluated the resulting FPRDN data over the 50 sentences. The resulting

total error was 1.48%.

The primary motivation for our above-described detailed examination of

the FPRDM data was to ensure that it could be used as an accurate reference in

our objective evaluation of pitch extractors. We believe that either the

original FPRD4 data or the one with the additional automatic voicing decision

changes would serve well as the intended reference.

6.3 Subjective Tests

We decided to conduct formal subjective tests on 2.4 kbit/s LPC and HDV

I * coders using each of the six pitch extractors (AMDFD, FPRDM, Gold, Harmonic-

Sieve, ILS, and JSRU), which leads to a total of 12 coding systems. We also

considered two acoustic background noise conditions (clear and ABCP noise) for

each coding system. From our 50-sentence speech database, we chose for the

" subjective tests a total of 48 sentences: 8 sentences spoken by each of 6

speakers; six of these sentences are common to all speakers. (The design

described below requires that the total number of sentences be an integer
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multiple of the number of coding systems.) Use of pairvise comparisons of the

1152 test stimuli (12 coding systems x 2 noise conditions x 48 sentences) -.

would be a formidable task indeed. We therefore decided to adopt a rating

test in which a listener rates the overall speech quality of each test

sentence on an 8-point scale, with 1 being the worst speech quality and 8

. being the best speech quality. It is desirable to limit the duration of each

test session to be within 2 hours; otherwise, listeners tend to become tired,

loose concentration, and not be consistent in their rating. Guided by this

consideration, we decided to run two separate tests, one for clean speech and

the other for ABCP noise-added speech. Each test contains 576 (- 12 coding

systems x 48 sentences) stimuli, arranged in 12 blocks as explained below.

Since we expected that speech quality differences over the different

pitch extractors might often be small, we decided to employ listeners with at

least some prior experience in listening to LPC speech. We chose eight people

from the BBN Laboratories Speech Group to serve as subjects; two of these

eight were closely involved in the preparation of the test stimuli. Since we

believe that a dozen or so judgments per stimulus are needed to obtain

reasonable average ratings, we decided to run four test sessions for each

subject, two versions of the clean speech test and two versions of the noisy

speech test. In this manner, we would get, for each test sentence, two
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judgments from each of eight subjects or a total of 16 judgments, which should

be sufficient. Considering the order in which to run the clean speech tests

and the noisy speech tests, we decided to divide the eight subjects into two

groups of four subjects each, with the first group going through the four

tests, each test run on a different day, in the order Clear I, Noise I, Noise

II, and Clear II, and the second group in the order Noise I, Clear I, Clear

II, and Noise I. Clear I and Clear II (similarly Noise I and Noise II)

,~ involve the same 576 stimuli but use different randomized ordering as

discussed below. From the test results, we can evaluate the effect of the

ordering of the clean speech and noisy speech tests on the ratings of the

listeners. Also, by comparing the Clear I and Clear II as well as the Noise I

and Noise II ratings, we can determine how reliable (or consistent) the

.subjects were in their ratings.

Next, we discuss the method we used for randomizing the order of the test

stimuli. The block of 48 sentences (6 speakers x 8 sentences) were first

divided into four sub-blocks of 12 sentences each. Each of the 12 sentences

- in a sub-block was assigned to a particular coding system. We then randomized

the ordering of sentences in each sub-block so that no two consecutive

sentences were spoken by the same speaker. This randomized ordering made up

the first test block of 48 stimuli (4 sub-blocks x 12 sentences). Next, the
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coding system ordering was rotated so that the system that vas assigned to the

f irst sentence of a sub-block vas assigned to the second sentence, the second

to the third, and so on. The 12 sentences from each sub-block were then

randomized to generate the second block of the test. We repeated th~is

procedure until 12 test blocks were produced, so that all 48 sentences

processed by all 12 systems were included. For Clear I and Noise I test

tapes, we used different randomization within blocks. We then randomized the

ordering of the blocks in the Clear I and Noise I cases to obtain,

respectively, the Clear 11 and Noise II test data.

Finally, for each test, we repeated the first block at the end of the

test tape so that each test tape had 13 blocks. The listeners were instructed

to use the first block of 48 test sentences in familiarizing themselves with

the rating task and with the range of speech quality to be mapped on to the 8-

point rating scale. The ratings from this practice block were not used in our

analysis.

Using the previously generated pitch files, we generated synthesized-

speech for our formal listening tests. Each of the chosen 48 test sentences

was synthesized using each of the two 2.4 kbit/s coders (HDV and LPC), each of

the pitch f iles (ANDFD, FPLDM, Harmonic-Sieve, Gold, JSRU, and ILS), and each
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noise condition (clear and ABCP noise), resulting in 1152 distinct test

stimuli. We then prepared test tapes as mentioned above. As we informally

*listened to the tapes to check if everything was right, we discovered that we

had inadvertently substituted, for one of the speakers, the sixth coin

sentence (see Section 6.1) with a different sentence. In other words, the

tapes contained all six common sentences from five speakers and only five from

* the sixth speaker. Finally, we ran the four tests for each of the two groups

of subjects.

Before we present the test results, we must point out that we

inadvertently used an incorrect time delay of 60 ms (or three 20-ms frames)

for the Gold pitch detector. This led to the Gold pitch extractor's inferior

-. subjective ratings reported below in Section 6.4 and inferior objective scores

reported in Chapter 8. (See Subsection 8.1.1 for further discussion).

6.4 Test Results

We entered all subjective rating scores into an interactive software

"" facility called RS-1 (a product of BBN Software Products Corporation). The

analyses described in this section were performed using the RS-1 system. The

plots included in this section were also produced by the RS-I system.
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At the outset, we examined the mean rating score and the standard

deviation for each of the eight subjects in each of the four test sessions.

The first group of four subjects took the tests (on consecutive days, each

test on a different day) in the order Clear 1, Noise 1, Noise 11, and Clear

II. As expected, the Clear II mean ratings were in general higher than those

for Clear I because the subjects had heard the day before the poorer quality

Noise II speech. The second group of four subjects took the tests in the

order Noise 1, Clear I, Clear II, and Noise II. Since a weekend separated the

last two tests, the Noise 11 mean ratings were not lower than those for Noise "

I. The mean score and standard deviation varied significantly over subjects

and sessions. Therefore, we decided to normalize individual rating scores by

subtracting the mean and dividing with the standard deviation computed over

the respective subject and session. Next, each subject made two ratings of

each stimulus sentence. To assess each subject's reliability, we correlated

the two sets of ratings over the 576 stimulus sentences. One subject for the

clear condition and three subjects for the noise condition did not produce

large enough correlation. We therefore discarded the data from these

subjects. The correlation coefficients for the remaining subjects ranged -

between 0.71 and 0.84. In the rest of our analysis, we thus used 7 subjects

(14 ratings per stimulus sentence) for the clear condition and 5 subjects (10

ratings per stimulus sentence) for the noise condition. Also, in computing
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the mean scores, we used the average of each subject's two ratings for each

stimulus sentence.

Before we present the results comparing the two coders and the six pitch

extractors, we mention that subjects were instructed to use the full 8-point

rating scale in each test session. Therefore, we caution that the ratings for

,* the noise condition must not be directly compared with the ratings for the

clear condition, since subjects were expected to assign different speech

quality values, under the two conditions, for a given score. Below, we first

*i present the mean score results over the 48 speaker-sentence combinations and

then present the mean score results over the six common sentences for each

speaker and over six speakers for each sentence.

Figure 4 shows a bar chart of the mean rating scores over all 48
U

sentences and over all subjects, comparing the six pitch extractors under each

of the four coder conditions: HDV/Clear, LPC/Clear, RDV/Noise, and LPC/Noise.

From Fig. 4, we see that the reference pitch FPRDM was judged to be the best

for the HDV coder or the LPC coder, under the clear condition or in ABCP

noise. In fact, all subjects were in agreement on this point. This result is

,. obviously important for our work on the objective evaluation of pitch

extractors, since it validates our use of the FPRDM pitch as reference.
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FIG. 4. A bar chart of the mean subjective rating scores, comparing the six pitch
extractors under each of the four coder/noise conditions.
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Considering the remaining f ive pitch extractors and the clear condition, ye

see from Fig. 4 that the AMDFD algorithm produced the best overall speech

quality for either of the two coders, with the JSRU method being slightly

worse. All seven subjects preferred AIDFD over JSRU for LPC/Clear; 5 subjects

• -preferred AMDFD over JSRU, one had no preference, and one preferred JSRU over

AHDFD, for RDV/Clear. The relative ordering of the five pitch extractors for

both LPC and HDV coders was, from best to worst, ANDFD, JSRU, ILS, R-S, and

Gold. Considering the ABCP noise condition, we observe from Fig. 4 that the

JSRU method was far superior to the other four pitch extractors. All five

subjects were in agreement on this point. The relative ordering of the five

pitch extractors was JSRU, ILS, AMIDFD, H-S, and Gold for LPC/Noise and JSRU,

ILS, ANDFD, Gold, and K-S for HDV/Noise; AHDFD was only slightly worse than -

* ILS.

Next, we consider the comparison of the BDV coder with the LPC coder. We .

note that the sentences included in the subjective tests were designed to

challenge the pitch extractors and thereby expose the differences among them.

These sentences, however, are not particularly suited to demonstrate the

speech quality differences between the HDV and LPC coders. The results we

obtained were, therefore, mixed in this regard. To make the LPC/RDV

comparison a little easier, we have replotted the bar chart in Fig. 5, which
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* FIG. 5. A bar chart of the mean subjective rating scores, comparing the HDV
coder with the LPC coder for each of the six pitch extractors and under
clear and noise conditions.
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- :2 shove the comparison for each pitch extractor. We repeat the caution that we

must compare UDV/Clear with LPC/Clear and NDV/Noise with LPC/Noise and not .

compare between clear and noise conditions. We see from Fig. 5 that the RDV

coder was slightly better or about the same as the LPC coder for all but the - .

Gold pitch extractors under the clear condition and that the LPC coder was

- slightly better or about the same as the HDV coder for all five pitch

extractors under the noise condition. (The difference between the two coders

in the latter case was, in fact, large for H-S.) For the accurate FPRDW pitch

and considering the common six sentences 1-6 (se Table 5), we found that the

HDV coder was better over the sentences 1, 5, and 6 and that the LPC coder was

* better over the sentences 2-4; this result was valid for both clear and noise
ft

conditions. Sentences 2-4 contain a number of stops and rapid transitions.

We believe that the inferior performance of the RDV coder was in part due to

the lover average transmission frame rate employed by the BDV coder (see

Section 2.2).

Next, we present the results examining more detailed aspects of the

subjective rating data. For this discussion, we have combined the results of

the RDV and LPC coders, since the two coders produced similar results as

". *mentioned above and since combining them makes the plots more readable. Also,

for computing the mean ratings, we have used, unless said otherwise, only the
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data from the 36 speaker-sentence combinations involving all six speakers and

the six common sentences. We have included the FPRDM results in plots given

below only as a reference, and we make comments on the relative performance

for the other five pitch extractors only.

Figures 6 and 7 depict the mean scores for each speaker (we averaged over

the six common sentences and all subjects) for the clear and noise conditions,

respectively. From Fig. 6, we see that all pitch extractors performed poorly -

on speaker LW (female) and well on speaker BF (also female). The low-pitched

male speaker DG was a problem for H-S and AMDFD, but not so for others. Each

pitch extractor has its own most favorite and least favorite speakers as

illustrated in Fig. 6. Looking at the range of variation of the mean score,

which is a measure of robustness over speakers, we find that AMDFD and Gold

exhibit the smallest range, H-S exhibits the largest range, and ILS and JSRU

exhibit a nearly equal range between these two extremes. We can make a

similar set of coments on the plots shown in Fig. 7 for the noise condition.

We observe that all pitch extractors performed substantially worse on speaker

LW, with AMDYD failing severely. The high-pitched male speaker PH was a -

problem for Gold and H-S, but not so for others. The range of mean scores was

large for all pitch extractors. --
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* FIG. 6. Mean subjective scores for each speaker, under the clear condition.
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FIG. 7. Mean subjective scores for each speaker, under the ABCP noise condition.
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Next, we consider the performance of pitch extractors as a function of

the speech material. Figures 8 and 9 display the mean scores for each of the
4 p

common sentences 1-6 given in Table 5 (we averaged over all six speakers and

all subjects) for the clear and noise conditions, respectively. Each pitch

extractor has its own most favorite and least favorite sentences. From

Fig. 8, we see that the all-voiced sentence 1 produced good results for all

but the H-S and AKDFD pitch extractors. The Gold pitch detector performed

particularly poorly on sentences 4 and 6. The range of mean scores was

smallest for AMDFD and largest for Gold. From Fig. 9, we note that AMDFD

performed quite poorly on sentence 2. The range of mean scores was smallest

for H-S and largest for AMDFD.

Since the results presented above show AHDFD and JSRU to be the two best

pitch extractors, we have plotted the mean scores for them and FPRDM against

the 48 speaker-sentence combinations in Figs. 10 and 11, for the clear and

noise conditions, respectively. We see from Fig. 10 that AHDFD performed

quite poorly on the sentence DG1, as also noted above, but otherwise AHDFD's

-- ratings were generally better and varied over a narrower range as compared to

JSRU's ratings. Also, we see several sentences over which FPRtf's rating was

exceeded by the rating of either ANDFD or JSRU (e.g., DG5 and MA). From

Fig. 11, we readily see the inferior performance of ANDFD as well as its
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FI:G. 9. Mean subjective scores for each of the six common sentences, under the
ABCP noise condition.
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performance variation over a wider range. AMDFD performed poorly on at least

some of the sentences from all speakers but BF and MA, with its ratings being

the worst for speaker LW. Again, we see a few cases in which FPRDM's rating

was exceeded by JSRU's or ANDFD's rating.

Using a separate statistical package available on our DECSystem-20

computer, we performed two six-way analyses of variance, one for the clear

condition and one for the noise condition (speakers x sentences x coders x

pitch extractors x subjects x replications). We included in the analyses only

the six common sentences. The results show that both speaker and sentence

were highly significant sources of variance, but that the interaction of

speaker and sentence was much more significant than either. This means that

although there was some similarity among different sentences spoken by the

same speaker, and among different speakers saying the same sentence, it is

better to regard each speaker-sentence combination as unique. Therefore the

analyses were repeated, replacing the 6 speakers x 6 sentences dimensions by a

single dimension representing all 48 stimulus sentences. For both the clear

and noise conditions, all main effects discussed above were significant,

although the difference between the KDV and LPC coders only just reached

significance (P ,, 0.38 for clear; P - 0.49 for noise). The effect of subjects -

was significant at about P 0.01. All the other main effects, and all of the
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interactions that included the stimulus sentences, were extremely significant

(P < 0.0001).

Considering again the comparison between the AMDFD and JSRU pitch

extractors, we restate the results that AHDFD performed better in the clear

and JSRU performed substantially better in ABCP noise. While there is one

clear condition (admittedly, "clear" is not unambiguous), there are a number

of operational noise conditions. For example, the Department of Defense (DoD)

typically evaluates speech coder performance over the noise conditions that

* include ABCP noise, office noise, ship noise, and tank noise. As we evaluated

the pitch extractors only in ABCP noise, we do not have sufficient evidence to

* recomend JSRU over AMDFD for the DoD applications, for example. Also, we

understand from a recent conversation with Tom Tremain of the DoD that version

45 of LPC-10 includes an improved AMDFD algorithm, which has produced better

intelligibility scores in noise.
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7. PERCEPTUAL EFFECTS OF PITCH AND VOICING ERORS--

Pitch extractors can and do produce several types of pitch and voicing

errors at various locations within an utterance. To develop meaningful

objective measures for evaluating pitch extractors, it is necessary to

identify individual error types and patterns that create distinct perceptual

effects and weight them according to their influence on speech intelligibility

and quality. To identify and isolate the perceptual effects of individual

error types, we developed a program to introduce in a controlled manner L

specific errors of known magnitude and duration at specified locations in the

reference FPRDM pitch contour. We conducted an experimental study involving

informal listening tests on the output speech of the LPC coder that used such

perturbed pitch contours, to assess the perceptual effects of different types

of pitch and voicing errors and thereby gain some insight for developing

objective pitch evaluation measures. In Section 7.1, we describe the program -

, we developed for generating perturbed pitch files. We present our

. experimental results on the perceptual effects of voicing errors in Section

7.2 and of pitch errors in Section 7.3.
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7.1 Controlled Generation of Pitch and Voicing Errors

Our program for perturbing or corrupting the pitch in a controlled

manner, called CORPTCH, has two parts. The first part collects

characteristics about an input utterance. These characteristics, in

conjunction with user-defined constraints, are used to specify regions of the

utterance where errors are permitted. The second part of the program

introduces pitch and voicing errors in these regions.

To obtain the required characteristics, the program reads the reference

FPRDM pitch data from a file. The corresponding speech file is also accessed,

and a frame-by-frame energy contour is computed. Voicing transitions are -

located, and statistics of the pitch and energy contour are obtained.

Measures of the dynamics of the pitch and energy are also computed. The

details of these steps are given below.

The relative locations of the voicing transitions are specified at each

frame as the distance from the current frame to the last transition and to the

next transition. The distances are defined as a percentage of the current

region length and also as the number of frames. The distances are used to

position errors relative to the location of voicing transitions.
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,' The statistics that are computed are the mean, standard deviation, and

median of the energy and pitch over the entire utterance. The median pitch -. -

for each voiced region is also evaluated. These measures are used to position

the errors with respect to the realtive magnitude of the pitch and energy.

To determine the dynamics of the pitch or energy in the neighborhood of a

given frame, we developed two measures: a "representative" slope, KS, which

indicates the direction and rate of change of the parameter (pitch or energy)

at each frame and a reliability factor, RF, which is a measure of the accuracy L

of the slope. RF also indicates whether the contour is smooth or %noisy" in

the region. To obtain the two measures for either pitch or energy, the

parameter contour is 3-point median smoothed to remove outliers. At each L

frame a difference is computed between the next frame smoothed value and the

last frame smoothed value. Notice that this difference (referred to as

U smoothed difference below) represents the trend of the parameter over three

smoothed frames or over five unsmoothed frames. However, this measure is not

. a good indicator of the slope if the parameter contour is noisy. To obtain

-. information about the smoothness of the contour, two more differences

(referred to as the unamoothed differences below) are computed: the absolute

value of the difference between the last frame and current frame unsmoothed

values and the absolute value of the difference between the next frame and the
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current frame unsmoothed values. The sum of the two differences is the total

change in the parameter over the three-frame interval. The reliability factor

RF is then defined as the absolute value of the ratio of the smoothed

difference to the sum of the unsmoothed differences. RF is a positive

fraction with a maximum value of one. An RP of unity implies that the

smoothed difference is the actual slope of the parameter at the current frame

and that the contour is smoothly varying. When either the numerator or the

denominator is zero, RF is computed as follows. If the sum of the unsmoothed

differences is zero, then the smoothed difference will also be zero indicating

that the parameter is not changing. RF is set to unity. If the smoothed

difference is zero and the unsmoothed difference sum is not, a peak or null in

the contour has occurred. To indicate the sharpness of the transition, RF is

* computed as the reciprocal of the umsmoothed difference. Once UF is computed,

the representative slope RS is computed as the square of RF times the smoothed

difference.

After all the characteristics have been computed, errors are introduced

in the pitch data. The user specifies the errors to be introduced. The

program permits a number of error categories including gross, fine (or

jitter), doubling, halving, VUV, UVV, a shift of the average fundamental, and

a change in the variance of the pitch contour. For each error category, the
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user specifies one or more thresholds and parameters that control the

intensity, frequency, and relative location of the error. At each frame, the

* pitch, the energy, the two measures of dynamics (RF and RS) for both pitch and

* energy, and the transition location measures are compared against respective

* thresholds. If all the quantities are within the user-defined bounds then a

pitch or voicing error is permitted. Other user-defined parameters, such as

* the number of errors, are examined to determine if an error must actually

occur at the current frame.
I,

In general, the pitch is corrupted using a single error category.

However, if more than one error category is chosen, the errors are created in.1
the following order. First, voicing errors are made at all designated frames

" '. in the utterance. These frames are not modified by any subsequent processing.

Second, fine errors are introduced in all chosen frames in the utterance.

Finally, gross errors including pitch doubling and halving are introduced. A L

gross error overzides a previously defined fine error. If mean and variance

changes in addition to one or more of the above error categories are

- specified, a second-pass processing of the pitch file is required.

" We conducted a number of experiments to examine the perceptual effects of

specific types of pitch and voicing errors. For each experiment, we produced
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a set of perturbed pitch files with our CORPTCH program, by introducing

selected types of error at known locations in the reference FPRDM pitch

contour. The perceptual effects of these errors on speech intelligibility and

quality were then evaluated by informal listening tests of synthtsis that used

the perturbed pitch files. We used the LPC coder for generating the

synthesized speech. For many of the experiments, only a small subset of

utterances from our speech database were tested. Consequently, the results of

these experiments, reported below, should not be regarded as conclusive, but

rather as indicators of the types of properties and characteristics that pitch

and voicing errors can exhibit.

7.2 Perceptuil Effects of Voicing Errors

We conducted several experiments to assess the perceptual effects of

voicing errors. Our first experiment was designed to examine the effects of

VUV and UVV errors at transitions. These errors are quite common, since

correct determination of the voicing state at transitions is a difficult task

for most pitch extractors. For the test we used six utterances, one sentence

spoken by all six speakers. The sentence, "A thickset officer pitched out her

hash", was chosen since it contained a number of transitions. For each of the

six sentences, four perturbed pitch files were created, each containing one of
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the following error types: (1) a VUV error at the first frame of each voiced

region, (2) a VUV error at the last frame of each voiced region, (3) an UVV

error at the first frame of each unvoiced region, and (4) an UVV error at the

last frame of each unvoiced region. The pitch frequency of the nearest voiced

- frame was inserted in frames containing UVV errors.

Informal listening tests confirmed that voicing errors of just a single

- frame in duration can cause noticeable distortions in the speech. The speech

with VUV errors lacked clarity and crispness and was characterized as being

choppy, raspy, and noisy. The presence of UVV errors caused the speech to

sound slurred and buzzy. Some tonal or ringing effects were also noted in

these utterances. Listeners (we used up to three experienced listeners)

invariably found that UVV errors were not as objectionable as the VUV errors.

VUV errors at the beginning of voiced regions generally appeared to degrade

the speech intelligibility and quality more than those at the end of voiced |.

regions. Changing of essential perceptual cues at the onset of voiced regions

because of the presence of voicing errors could be responsible for this

result. A similar result was obtained when we compared the perceptual effect 0

* of UVV errors at the beginning of unvoiced regions with that at the end of

unvoiced regions, although the difference in this case was less severe.

Judgments on the severity of the foregoing four types of voicing errors and
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their dependency on location differed greatly across the various utterances

and among the listeners. These differences might have been caused to some

extent by listener preference but largely because of the difference in the

energy of frames at which the errors occurred. The average energies of the

* first and the last frames of unvoiced regions were approximately equal at 28.5

and 27.2 dB, respectively, whereas the average energies of the first and the

last frames of voiced regions were higher at 42.7 and 35.2 dB, respectively,

and differed by 7.5 dB.

A second experiment was conducted to examine the influence of frame

energies on the perceptual effects of voicing errors. VUV errors were tested

since the frames where they occurred contained the largest variation in

energy. Two sets of perturbed pitch files were created. One set contained

errors at the first frame of each voiced region only when the frame energy was

above a threshold of 43 dB. The other set contained errors at the first frame

of each voiced region only when the energy was below the same threshold.

Similar test data was also generated for VUV errors at the end of voiced

regions using an energy threshold of 35 dB. The thresholds used resulted in

approximately an equal number of errors in both the high and low energy

regions for most sentences. Informal listening tests indicated that errors at

high-energy frames al-ways caused more adverse effects than those at low-energy
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frames. From listening tests of various parts of sentences from the first

experiment described above, ye were able to conclude that the severity of U"Y

errors at transitions was also dependent on frame energies.

We conducted a third experiment to determine the effect of error location -

and type when energy was not a f actor. A single sentence was chosen that

* contained several transitions with approximately the same energy levels and

* where the energy changes across the transitions were small (a total of 7

*transitions). VUV and UWV errors of a single frame duration at these

transitions were compared. The difference in the severity of the two error

types or the perceptual difference caused by location was rather small. These

* observations seen to indicate that energy rather than error type or location

is the important factor. However, since only a single utterance was tested, i
it is difficult to draw any sound conclusions from the test.

In all of the above experiments, only a single frame at each transition

*contained a voicing error. We also examined the ef fect of VUV errors of two

frames in duration at each transition for the six-sentence database. The

* -resulting speech had a whispered quality that was quite obvious. This

* observation indicates that the duration of the voicing error is an important

factor.
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Voicing errors in the middle of voiced and unvoiced regions vere also

*examined. Three test sentences were chosen that contained sections of voiced

regions where the energy dropped substantially f or short intervals. Pitch

extractors have a tendency to cause VUV errors in these regions. Listening

tests indicated that errors in these regions of a single frame in duration had

little or no effect on speech quality or intelligibility. However, if two or

more consecutive errors occurred, they did cause perceivable raspiness. From

* the previous experiments it was clear that VUV errors at high-energy frames

would cause substantial degradation, so no further tests on these error types

were conducted.

To examine the effect of UVV errors in the middle of unvoiced regions, a

single sentence was chosen; this sentence contained several unvoiced regions

* that differed substantially in energy levels. Five perturbed pitch files were

created, each containing UVV errors in a different energy region. The five

energy regions were: below 10 dB, 10 to 20 dB, 20 to 30 dB, 30 to 40 dB, and

above 40 dB. Errors of a single frame in duration in regions below 30 dB had

minimal effect on the speech. However, consecutive errors of 2 or more frames

caused the speech to be buzzy. All errors in the high-energy regions (above

30 dB) produced audible effects. Errors in the highest-energy region caused

severe distortions that reduced the intelligibility of the speech.
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We summarize the results of our listening tests on -oicing errors as

follows:

o The effect of voicing errors (VUV or UVV) is highly dependent on
frame energies; the higher the energy of the frame at which an error
occurs the larger the perceived distortion.

o Errors that occur in two or more consecutive frames are much more
audible than isolated frame errors.

o VUV errors cause raspy, noisy effects, whereas UVV errors cause
slurring and buzziness. UVV errors are in general not as
objectionable as VUV errors.

a
o Some evidence exists that errors at the beginning of voiced regions t

.. cause more adverse effects than those at the end of voiced regions.

7.3 Perceptual Effects of Pitch Errors

We conducted several experiments to assess the perceptual effects of

pitch errors. From the different error measures and other output obtained

S using the program PEVAL for the various pitch extractors (see Section 4.3), we

observed that many of the gross pitch errors occurred at the beginning and end

of voiced regions. Large variations in pitch can occur in these regions, and

most pitch extractors have a tendency to smooth these variations, which

* produces poor estimates of the actual pitch dynamics. To examine these

issues, we chose twelve utterances, two sentences spoken by the six speakers,

and manually changed the FPRDM pitch values of up to three frames at the t
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-beginning and end of voiced regions. To assure that only highly dynamic

- regions were modified, only pitch values with a representative slope (RS) of

* greater than 5% were changed. The pitch values were altered so an to yield a

*flat pitch contour. A substantial number of the pitch changes resulted in

errors of 10 to 20%, and some errors were as high as 40 to 801. Informal

listening tests indicated that many of the errors caused little or no effect

on speech quality or intelligibility. Upon comparing these utterances with

synthesis without pitch errors, we did find a few regions that sounded

slightly monotone. In these regions, the pitch contour had a large and

consistent slope, and we had changed all three pitch values to yield a flat

local pitch contour, thus altering the natural trend of the pitch contour.

These observations were surprising, considering the results we obtained for

* voicing errors in the same regions.

Smoothing of rapid changes in pitch over short intervals (2 to 5 frames)-

*in the middle of voiced regions was also examined. Results indicated that

*these errors also had little or no ef fect on speech quality ox

intelligibility. These observations indicate that smoothing of the pitch-

* contours (both reference and test) prior to objective measurement computations

* may remove errors that are not perceptually significant and could result in

improved objective scores.
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Another experiment was conducted using six sentences to examine the

effects of pitch errors in smooth or non-noisy regions of the pitch contour.
- 91

Errors of +4% were inserted in regions where the pitch contour was flet and

non-noisy. For each of the utterances, an equal number of errors were also

made in regions where the pitch contour was smoothly increasing or decreasing.

* Similar test data with errors of 8% were also generated. Changes in speech "*

quality were noted in all utterances containing errors in the flat regions.

The speech was characterized as being more bubbly. The flat region errors of

±8Z caused noticeable distortions in the dynamics of the pitch that were not L-

natural. Pitch errors of +4Z in regions of increasing or decreasing slope

were not detectable, whereas errors of +8% caused some noticeable but not %

unnatural changes in the pitch dynamics. In the latter case, the perturbed L

pitch and the reference pitch produced natural-sounding speech, and there was

no clear preference between the two. The perceptual effects of errors in both

the flat and sloped regions were more pronounced for the female speakers and

when the errors occurred in several consecutive frames.

We summarize the results on pitch errors as follows:

o Large pitch errors at the beginning or end of voiced regions may not
' .- be perceptually relevant if they do not disrupt the natural trend of

the pitch contour over several frames.
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o Smoothing of short-duration rapid changes in the pitch contour in the
middle of voiced regions may not degrade the speech quality and
intelligibility. This suggests smoothing of the test and reference
pitch contours before they are compared for objective evaluation. -'

o The adverse effects of pitch errors are dependent on the magnitude of
the errors, the magnitude of the pitch frequency, the duration of
errors, and the total number of gross errors.

o Pitch errors in regions where the pitch contour is flat are more
noticeable than those in highly dynamic regions.

* Again, we wish to stress that the results presented above should be --

viewed as empirical and should provide only general indications of perceptual

relevance (as viewed through LPC synthesis) of pitch and voicing errors.

Objective measures that incorporate one or more of the properties presented

above are described in the next chapter.
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' . 8. OBJICTI EVALUATION OF PITCR EXTRACTO.S

In this chapter, we describe a large number of objective measures we

developed and investigated for the evaluation of pitch extractors (Section

8.1); present the results we obtained by correlating the objective scores with

the mean subjective rating scores from our formal subjective tests described

in Chapter 6 (Section 8.2); and recomend a set of objective measures each of

which produced consistently high correlation for both LPC and IDV coders,

under both clear and ABCP noise conditions, and in two evaluation conditions,

one involving the complete database of 48 stimulus sentences (six speakers x

* eight sentences) and one involving eight subsets of six stimulus sentences

each (Section 8.3).

8.1 Development of Objective Measures

E In Subsection 8.1.1. we briefly review the basic objective pitch and

voicing error measures and present the results we obtained using these basic

error measures over the 48-sentence speech database. Subsection 8.1.2

describes several methods of weighting the basic error measures, which we

" . developed using the results of our perceptual study given in Chapter 7. In

- Subsection 8.1.3, we outline the procedure that we used in computing a large

number of objective measures.
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8.1.1 Basic Error Measures

As we mentioned in Section 4.2, there are three situations in which a

pitch extractor under test causes an error to occur; in terms of the voicing

status of the true or reference pitch and the test pitch, respectively, these

three situations are denoted as VUV, UWV, and VV. The basic error measure,

given in Section 4.2, for either VUV or UVV error type is the number of frames

containing the respective error type expressed as a percentage of the total

number of frames of data used in the evaluation. The VV case involves two

types of error, gross pitch error and fine pitch error; the associated basic

error measures are percent gross pitch error (i.e., percentage of the frames

containing gross pitch errors), fine pitch error mean, and fine pitch error -

standard deviation. In our objective evaluation work, we used primarily the

three basic error measures: the percent VUV error, the percent UVV error, and

the percent gross pitch error, and the total error measure, which is the sun

of these three basic error measures. We have referred to these measures as

basic measures since they do not involve any form of weighting based on such

quantities as speech signal energy.

Before we describe methods of weighting the foregoing basic error

measures, we present the results we obtained using the program PEVAL and the
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basic error measures over the 48-sentence speech database used in our formal

subjective tests. The error results for the five pitch extractors under
A*

evaluation are given in Table 6 for the clear case and in Table 7 for the ABCP

noise case. In computing the error results, we used a frame size of 20 a (or

. :a frame rate of 50 frames/s) to correspond to the frame size used by both the

LPC and HDV coders, which provided the test stimuli. Pitch frequency doubling

and halving errors, which are included in the gross pitch error, are also

given in the tables as percentages.

Error AHDFD Gold li-S liIlU

Percent VUV Error 7.31 12.64 13.56 13.38 7.33

. Percent UVV Error 2.25 6.61 1.04 0.73 2.50

Percent Gross '
Pitch Error 4.66 4.52 8.87 2.44 1.90

R Total Error 14.22 23.77 23.47 16.55 11.73

Pitch Doubling 0.25 0.08 1.32 0.00 0.00

. Pitch Halving 0.05 0.60 0.67 0.55 0.50

- . TABLE 6. Basic pitch and voicing error results for the five pitch
- extractors, computed over the 48-sentence clean-speech database.

; ;,:~-. I'
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SrL A.D Gold f-S ILS jjp-"

Percent VUV Error 18.28 29.61 7.15 32.79 26.32

Percent UVV Error 11.42 2.14 15.52 1.89 0.20

Percent Gross
Pitch Error 12.79 4.79 14.83 3.62 0.93

Total Error 42.49 36.54 37.51 38.30 27.45

Pitch Doubling 0.08 0.03 1.39 0.0 0.0

Pitch Halving 6.59 2.46 3.65 1.89 0.25

TABLE 7. Basic pitch and voicing error results for the five pitch
extractors, computed over the 48-sentence ABCP noise-added speech
database.

"" From Table 6, we note that the voicing error results for ANDFD and JSRU are

about the same and are considerably superior to those for the other three

pitch extractors. The two cepstral pitch extractors, ILS and JS.U, produced -

the lowest gross pitch error. The JSRU algorithm also produced the lowest

total error. The rank ordering of the pitch extractors using the total error

as the criterion corresponds to the rank ordering by the mean subjective

rating score, with the one exception that the total error reverses the order

of the top two pitch extractors.
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Table 7 shows that gross pitch error and total voicing error increased

substantially in noise, for all five pitch extractors. Because of the added

ABCP noise, a substantially large number of frames were declared unvoiced

resulting in a large VUV error for all but the H-S pitch extractors. While

one would expect to see some reduction in the UVV error for the same reason,

both AHDFD and H-S produced substantially higher UVV error in noise than in

clear. It is reasonable to assume that the higher UVV error was also

responsible for the higher gross pitch error for these two pitch extractors.

As in the clear case, the JSRU method produced the lowest gross error and the

* lowest total error. Considering the rank ordering of the pitch extractors,

the total error is in agreement with the mean subjective score only as far asR
the best pitch extractor is concerned.

From a comparison of the results given in Table 3 for the six TI

sentences (see Section 4.3) with those given in Table 6 for our 48-sentence

database, we find that the total error given in Table 6 is substantially

larger than that given in Table 3 for Gold and R-S. A detailed examination

.- uncovered the fact that we had inadvertently used an incorrect time delay of

60 as (or three 20-ma frames) for the Gold pitch detector. We recomputed the

total error over the 48-sentence database, using different values of time

delay as discussed in Section 4.3. A delay of 20 mas produced a total error of
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13.2Z, and a delay of 40 as produced a total error of 17.2Z. Had we used a

20-ms delay, the Gold pitch detector might have yielded substantially better

subjective rating scores than we reported in Section 6.4. To be consistent

with the already gathered subjective data, however, we continued to use the

60-ma delay for the Gold pitch detector in our subsequent objective evaluation

work. A similar recomputation of the total error for the K-S method indicated

that we had used the correct or minimum-error delay of 20 ms for this pitch

extractor.

8.1.2 Methods for Weighting the Errors

As mentioned above, we considered in our objective evaluation study three

types of errors: VUV error, UVV error, and gross pitch error. The basic or

unveighted error measure for each error type assigns a value of one to each

occurrence of the error, computes the total value over the database, and

normalizes it by dividing with the total number of frames and multiplying with . .

100 (to get the result in percentage). The idea of weighting each frame error

is to reflect the perceptual significance of the error in some manner, with

the expectation that the weighted error over the database produces a higher

correlation with the subjective rating scores than does the unweighted error.

From the experimental results we reported in Chapter 7 on the perceptual
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effects of pitch and voicing errors, we chose to investigate four methods of

w weighting: weighting based on the speech signal energy over individual

frames, weighting based on the duration of consecutive errors, weighting based

on the pitch frequency or the magnitude of the pitch frequency error, and

weighting that accounts for the context in which the error occurs. For each

weighting method, we conducted several initial tests to determine one or more

appropriate forms for the weight; in these tests, we computed the correlation

of the weighted error with the mean subjective scores (see Section 8.2) for

the evaluation of the different forms we considered for the weight. Below, we L

describe the four weighting methods and indicate the form(s) we chose for the

weight, in each case.

The importance of energy weighting is clear from the results of our

perceptual study reported in Chapter 7. Our perturbation experiments showed

that pitch and voicing errors occurring in high-energy frames produced more

audible effects in the synthesized speech than those in low-energy frames did.

To emphasize errors at high-energy frames, we considered three forms for the

-- energy weight: the RMS value of the speech signal over a frame, the RIS value

. !in decibels, and the RMS value divided by the maximsm frame RMS value over the

individual test utterance. Reference [101 uses the third form.
-6-
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From the results of our perceptual study of pitch and voicing errors, we

note that errors occurring in two or more consecutive frames are substantially

more audible than are isolated frame errors. To account for this duration

effect, we chose empirically the following weighting method: a weighting

factor of unity for isolated frame errors, a weighting factor of 1.5 for a

duration of two to five frames, and a weighting factor of 2.0 for a duration

of six or more frames.

For pitch-frequency weighting, the weighting factor we considered is

FR/FM&X for both VUV and gross pitch errors and FT/FMAX for UVV errors, where

FR is the reference pitch frequency, FT is the test pitch frequency, and MhX-

is the maximum permissible pitch frequency. We used FMX=500 Kr. For pitch-

error weightIng, the weighting factor we considered is (I FT-F I/FR)r; we

used r-1. In our investigation, we used the above pitch-frequency weighting

for VUV and UVV errors and the above pitch-error weighting for gross pitch

- errors.

The results of our perceptual study show clearly the perceptual

importance of context (or location) in which pitch and voicing errors occur.

There are three parts in our implementation of the context-dependent weighting

function. The first part, which was motivated by the observed perceptual
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significance of the voicing errors at unvoiced-voiced transitions (see Section

7.2), is to penalize the early and the late start of voicing in these
a

transitions. Empirically, we chose a weight factor of 2 for the VUV errors

occurring in the first three frames of the voiced region and for the UVV

" * errors occurring in the last three frames of the unvoiced region, in any

unvoiced-voiced transition; we used a unity weight for all other voicing

* errors. Second, we recall from Section 7.2 that large pitch errors at the

* |beginning and at the end of a voiced region and large pitch errors caused by

smoothing of short-duration rapid changes in the true pitch in the middle of a

voiced region did not produce significant changes in perceived speech quality

and intelligibility. We chose a weight of 0.1 for gross pitch errors

occurring in the first two and the last two frames of a voiced region,

provided that the local slope RS is greater than 10. We chose the same weight

for gross pitch errors in the middle of a voiced region, provided that the

reference pitch contour is noisy (RF < 0.5 and RS S 10). All other gross

pitch errors were assigned a weight of unity. The third part deals with the

threshold used in deciding if a pitch error is a gross pitch error or not.

The nominal value used for the threshold is 10%. In voiced regions where the

.. reference pitch contour is flat (RS < 4) and non-noisy (NF >0.8), we lowered

the threshold to 5%, to account for the observed increase in listener's

sensitivity to pitch errors in such regions (see Section 7.2). We also note
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that the difference limen (or just-noticeable difference) for pitch frequency

is 0.3% to 0.61 for a flat (monotone) pitch contour [22) and about 2Z for a

linear (ramp) pitch contour [23]. We reiterate that the presence of the

context included in the foregoing three parts is determined from the reference

pitch data.

Since we considered the use of no weighting or one or more of the four

weighting methods for each of the three types of errors (VUV, UVV, and gross

pitch errors), we had a total of 125 (5x5x5) possible combinations we

investigated. As error measures, we considered each of the three types of

errors separately, sum of any two types of errors, and sum of all three types

of errors. This led to a total of 215 (3x5 + 3x25 + 1x125) error measures we , . -

investigated. The total of all three types of errors produced, in general,

higher correlation with subjective scores than did the one-at-a-time and the

tvo-at-a-time error measures (see Section 8.2). It is convenient to use a

simple notation to refer to the 125 total error measures. Let us use the

order VUV error, UVV error, and gross pitch error in specifying the weights.

Also, let us denote the unweighted case by the letter C (for count); the

energy weighting by the letter E; the duration-based weighting by the letter

D; the pitch frequency and pitch error weighting by the letter F (for

frequency); and the context-dependent weighting by the letter L (for
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. location). Thus, the notation C-C-C refers to the total unweighted error

measure, and the notation EDFL-C-EF refers to the total error measure that

uses all four weighting methods for VUV errors, no weighting for UVV errors,

and energy and pitch-error weighting for gross pitch errors.

We also implemented the objective measure used in [10]. We refer to this

measure as the TI measure. This measure is a total of weighted VUV errors,

weighted UVV errors, and weighted pitch errors (gross and fine pitch errors

included). All errors are energy weighted using the factor (RMS value/lmaximum

RMS) discussed above. In addition, pitch errors are weighted with the factors

[(FT-FR)/FR]2 and ¥1/500. Voicing errors in a frame at any voicing transition

are weighted with a factor F/500 and all other voicing errors are weighted

with a larger factor (1 + F/500), where F-FR for VUV errors and F-FT for UVV

errors. This last-mentioned context-dependent weighting is contrary to our

* weighting method, which emphasizes the voicing errors at the unvoiced-voiced

transitions.

8.1.3 Computation of Objective Measures

The procedure we used for computing the large number of objective

measures described above was incorporated as part of the program PEVAL (see

* Section 4.2). The procedure is as follows. A frame-by-frame comparison is
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made of the pitch data from reference and test pitch files over the speech

database of interest, at a rate of 50 frames/s. Unprocessed speech waveform

files are used to compute the frame speech energy required for energy

weighting. Reference pitch data is used to locate the voicing transitions and

compute each frame the slope RS and the reliability factor RF as discussed in

Section 7.1; these are required for context-dependent weighting. For each

frame that contains a pitch or voicing error, a set of weighting factors and

products of these factors for different combinations of the weighting methods

are computed. These weights and products of weights are summed over a

database of pitch files, separately for each of the three types of errors

(VUV, UVV, and gross pitch errors), normalized by dividing with the total

number of frames processed for the cases involving no energy weighting and

with the total of the frame energy factors for the cases involving energy

weighting, and multiplied with 100 to obtain percentages. These suns are

actually error measures since the unweighted value assigned to an occurrence

of any error is unity. Composite error measures are then computed by adding-"

any two of the VUV, UVV, and gross pitch error measures and by adding all

three. In one session, the user computes the various objective measures for

each of several pitch extractors; the computed objective measure data are all

stored in one disk file to be used in subsequent correlation study. We -.

produced two objective measure files, one for clean speech and one for ABCP
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" noise-added speech. Notice that the same objective measure file applies to

both LPC and HDV coders, since they use the same pitch files as input. _..

8.2 Correlation with Subjective Rating

To evaluate and choose some good ones from the large number of objective

measures we considered, we correlated the data from each objective measure

against the mean subjective rating scores. We performed the correlation study

in each of eight different conditions described below. First, we considered

the overall scores for each of the four cases: LPC/Clear, HDV/Clear,

LPC/Noise, and EDV/Noise. The overall subjective scores were obtained by

I computing, for each of the five test pitch extractors, the mean of 672 ratings -

for the clear condition (48 stimulus sentences x 7 subjects x 2 judgments) and

the mean of 480 ratings for the noise condition (48 stimulus sentences x 5

subjects z 2 judgments). The overall objective scores were computed over the

48 sentences, once for the clear condition and once for the noise condition.

(Recall that the objective scores are the same for both coders.) We had thus

five objective scores and five subjective scores corresponding to the five

pitch extractors, and we computed the correlation between the two sets of

scores. We shall refer to this correlation as the 5-item correlation as it

involves five scores. Second, we considered the scores at a more detailed - -
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level, again for each of the four coder/background cases. We divided the 48

stimulus sentences into eight sets of six sentences each. For each of the

first six sentences in Table 5, the set contained the same sentence spoken by -

all six speakers. From the remaining 12 stimulus sentences, we formed two

sets by grouping together phonetically similar sentences. We considered the

evaluation of each pitch extractor over each of the eight six-sentence sets,

which produced 40 items to correlate over. We obtained the subjective scores

by computing the mean of 84 ratings for the clear condition (6 stimulus

sentences x 7 subjects x 2 judgments) and the mean of 60 ratings for the noise

condition (6 stimulus sentences x 5 subjects x 2 judgments). We computed the

objective scores over each of the eight six-sentence sets, once for the clear

condition and once for the noise condition. We shall refer to the correlation

for the second case involving detailed scores as the 40-item correlation. The --7

40-item correlation should in general be lower than the 5-item correlation.

All correlations were computed using PEVAL under a separate command called _j .

CORREATE.

A good, robust objective measure must produce high correlation under all

eight evaluation conditions described above. In our investigation, we . ....

required high correlation in the clear condition and only a small to moderate

decrease in correlation in the noise condition.
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As we mentioned above in Subsection 8.1.2, we used the correlation

results in selecting the specific forms of the weighting factor for each of

the four weighting methods. Before we provide a list of the "best" objective

measures, we present two results that helped us by reducing the number of

. objective measures we needed to monitor. First, Table 8 gives the 5-item

correlation values for the four unweighted error measures: percent VUV error,

percent UVV error, percent gross pitch error, and total error, which is the

sum of the first three error measures. Of the first three error measures, the

table shows that VUV error produced the highest correlation value for

LPC/Clear and HDV/Clear. The same result was obtained in the study reported

in 1211, which considered only the LPC/Clear condition. For the two noise

conditions, however, the VUV error produced not only the lowest correlation

" -but also a positive correlation associating a higher error with a higher

* subjective rating, which is clearly wrong. This result and many others we

came across in our investigation raise the caution that an objective measure

that works well in the clear may not necessarily work well in the noise.

* *. Table 8 shows another important result that the total error always provided

- the highest correlation. Based on this result, we monitored only the total

error in our subsequent work.
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Error LPC/Clear UDV/Clear LPCINoise UDV/Noise

Percent VUV
Error -0.737 -0.720 0.261 0.461

Percent UVV

Error -0.503 -0.540 -0.509 -0.662

Percent Gross
Pitch Error -0.602 -0.604 -0.612 -0.732

Total Error -0.957 -0.964 -0.813 -0.761

TABLE 8. 5-item correlation results for four basic or unveighted error
measures.

Form of Energy

Weighting LPC/Clear DY/Clear LPC/Nois fl!LNoiass

EMS Value -0.984 -0.990 -0.770 -0.602

RMS Value
in dB -0.948 -0.952 -0.827 -0.745

RNS/M&X.RMS -0.985 -0.988 -0.759 -0.588

TABLE 9. 5-item correlation results for three forms of energy weighting.
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Second, we compared the three forms of energy weighting: 1) RMS value, 2) RNS

value in dB, and 3) RMS/NAX.RMS (see Subsection 8.1.2). Table 9 gives the 5-

* item correlation values for the four coder/background conditions. The first

form produced the highest correlation in the clear, and the second form did in

the noise. Consistent with our above-stated objective of achieving high

correlation in the clear, we decided to use the RMS value for energy weighting

in our subsequent, work.

In our subsequent work, we monitored the correlation data for 125

i objective measures of total error, which were the result of using no weighting -7

S-or one or more of the four weighting methods with each of the three (VUV, UVV,

and gross pitch) errors. We also monitored the correlation for the TI

1 measure. Below, we shall use the simple notation, defined towards the end of

Subsection 8.1.2, to refer to these objective measures.

- .From the correlation results obtained in the eight different conditions,

*-. we selected the 12 best objective measures that produced high correlation in

the clear (-0.9 or better) and moderate-to-high correlation (-0.75 or better)

in the noise. The average correlation over all eight conditions for each of
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these 12 measures was high and ranged from -0.891 to -0.942. We present the - -

5-item correlation results in Table 10 and the 40-item correlation results in

Table 11. We have ordered the 12 measures in terms of the average correlation

over the eight conditions; the average correlations are given in Table 12.

For comparison purposes, we have also given in Tables 10-12 the correlation

results for the unweighted measure C-C-C and the TI measure. We see from

Tables 10-12 that the TI measure performs quite well in the clear but quite

poorly in the noise, producing an average correlation of only -0.561. Even

the unweighted measure seems to be moderately robust under all eight

conditions, with an average correlation of -0.824. The correlation results

given in Tables 10-12 show our 12 best objective measures to be substantially .

more robust and yielding substantially higher average correlation as compared 1

to the two reference measures. From Table 12, we see that as expected, the -

averages over the 5-item correlations were all larger than the averages over

the 40-item correlations. If we consider only the overall ratings of the five .9

pitch extractors, the average (5-item) correlation for the 12 best measures

ranged from-0.906 to -0.982.
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Objective

PAL Measure LPC/Cler =/Clear LPC/Noise HDY Noise

S- Bes Measures:

S EDFL-C-EF -0.990 -0.991 -0.995 -0.953

2 EDFL-L-EDFL -0.988 -0.989 -0.937 -0.976

3 EFL-DFL-EL -0.986 -0.995 -0.958 -0.937

4 EDFL-EDL-EFL -0.988 -0.990 -0.985 -0.929

5 EFL-DF-EL -0.993 -0.998 -0.978 -0.916

6 EFL-EDIL-EL -0.987 -0.991 -0.981 -0.907

7 IL-L-EDF -0.994 -0.996 -0.961 -0.864

.8 E-C-EDL -0.995 -0.999 -0.902 -0.826

I 1 9 5h-nFL-EL -0.988 -0.990 -0.969 -0.880

10 E-EL-EDL -0.984 -0.984 -0.903 -0.805

11 E-EDL-EF -0.963 -0.957 -0.911 -0.833

12 E-EDL-EDL -0.985 -0.987 -0.855 -0.795
I o

Ragp~j Measures:

13 C-C-C -0.961 -0.968 -0.817 -0.770

3 14 TI Measure -0.992 -0.989 -0.185 -0.015

TABLE 10. 5-item correlation results for 12 best measures and 2 reference
measures.

107

• ... ,.-.. -



Report No. 5726 Bolt Beranek and Newman Inc.

Objective
. No. Measure LPCIClear HDV/Clear LPC/Noise DV/oise. .

I Measures : -

1 EDnL-C-EF -0.929 -0.924 -0.867 -0.888

2 EDnL-L-EDFL -0.919 -0.895 -0.854 -0.899

3 EFL-DFL-EL -0.893 -0.911 -0.854 -0.899

4 BDFL-EDL-EFL -0.909 -0.917 -0.839 -0.870

5 EJL-DF-EL -0.905 -0.922 -0.842 -0.862

6 EFL-EDFL-EL -0.901 -0.922 -0.823 -0.849 -' -.

7 EL-L-EDY -0.932 -0.927 -0.802 -0.812

8 E-C-EDL -0.927 -0.932 -0.846 -0.818

9 EFL-EFL-EL -0.909 -0.923 -0.761 -0.775 --

10 E-EL-EDL -0.917 -0.931 -0.838 -0.817

11 E-SDL-EF -0.918 -0.922 -0.814 -0.823

12 E-EDL-EDL -0.909 -0.928 -0.831 -0.835

Reference Measures:

13 C-C-C -0.860 -0.843 -0.721 -0.650

14 TI Measure -0.918 -0.878 -0.332 -0.180

TABLE 11. 40-item correlation results for 12 best measures and 2 reference
measures.
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Objecti"e Average over Average over Average over

Objective 5-item 40-item all eight
No. easure Correlations Correlations Conditions

I EDL-C-EF -0.982 -0.902 -0.942

2 EDFL-L-EDFL -0.973 -0.892 -0.932

3 FL-DnL-EL -0.969 -0.889 -0.929

4 EDFL-EDL-EFL -0.973 -0.884 -0.928

5 EFL-DF-EL -0.971 -0.883 -0.927

6 EEL-EDFL-EL -0.967 -0.874 -0.920

7 EL-L-EDF -0.954 -0.868 -0.911

8 E-C-EDL -0.931 -0.881 -0.906

59 E,-0-EL -0.957 -0.842 -0.899

10 1-EL-EDL -0.919 -0.876 -0.897

11 E-EDL-EF -0.916 -0.869 -0.893

I 12 E-EDL-EDL -0.906 -0.876 -0.891

Reference Mea:ures:

13 C-C-C -0.879 -0.769 -0.824

14 TI Measure -0.545 -0.577 -0.561

TABLE 12. Average correlation results for 12 best measures and 2 reference
measures.
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8.3 Recomendations

It is clear from the results given in the last section that the 12 best

measures should be recommended. We address in this section how one may select

a subset of these measures. We discuss below two ways of making this

selection.

First, besides the requirement of high correlation, we must seek

objective measures with meaningful combinations of the weighting methods. We

believe that such measures are likely to continue to be valid for evaluation

situations that are different from the ones used in our investigation (e.g.,

different pitch extractors, different but sufficiently large speech databases, -

different noise conditions, etc.) We believe that an objective measure should

use the same F (pitch frequency) and L (context) weighting for both VUV and

UVV errors. For example, the measure EDFL-C-EF does not satisfy this

criterion, while the measure EFL-EDFL-EL does. Of the 12 best measures given

in Tables 10-12, the measures 3, 6-9 satisfy the above criterion and may

therefore be recommended.

Second, we consider the ability of the objective measure in rank ordering

the test pitch extractors in a way that approximates the rank ordering
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provided by the mean subjective rating. For this issue, let us use the

*overall mean rating. One can compute the Spearman's rank-order correlation
AN

and choose the measures that produce high correlation. But, we did not do

this. For cases where the objective ordering differs from the subjective

ordering, it is desirable to examine how close are the objective scores for

the out-of-order pitch extractors; if the corresponding subjective scores are

also close to each other, we may consider the objective measure still

acceptable. In practice, unless the objective scores for two pitch extractors

are different by more than some amount, we may not want to conclude that one

is better than the other. With this rank-ordering criterion in mind, we

examined in detail, for each of the 12 best measures, the ordering of the five

pitch extractors by the objective scores and the objective scores themselves

and compared them with the corresponding subjective ordering and mean ratings,

for the four cases: LPC/Clear, LPC/Noise, HDV/Clear, and 1DV/Noise. The

measure -DFL-C-EF (No. 1 in Tables 10-12) that produced the highest average

correlation also yielded the correct ordering for all but the DV/Noise cases;

this is because the objective measure gives only one score for both LPC and

HDV coders, but the subjective ratings reversed the order of the fourth and

fifth pitch extractors between the LPC/Noise and HIV/Noise cases (see Section

6.4). Of the 11 remaining measures, one (No. 3 in Tables 10-12) produced the

right ordering for the two clear conditions, and none of the other 10 measures

;' ~111 ""
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produced the right ordering even for one coder/background condition. Many of

the measures yielded the least error for JSRU in the clear and the most or the

second most error for A1DFD in the noise, which is not in agreement with the

subjective ordering (JSRU second best in the clear and AMDFD third best in the

noise). However, we found four objective measures that satisfied the

approximate ordering criterion we stated above; these four measures are Nos.

3, 4, 6, and 9 in Tables 10-12. For the best rank-ordering measure stated

above and the four measures just identified, we have given in Tables 13 and 14 ....

the objective scores for the five pitch extractors, respectively, in the clear

and in the noise. For comparison purposes, we have also given in the tables
.1

the data from the unweighted measure (C-C-C) and the TI measure.

From Table 13 and Fig. 4 (see Section 6.4), we see that the first two

measures and the TI measure correctly predicted the subjective ordering of the

five pitch extractors in the clear condition. The other four measures -

reversed the ordering of the two best pitch extractors, but provided the right

ordering otherwise. Table 14 shows that only the first measure performed

quite well in predicting the subjective ordering in the noise condition. The

next four measures correctly predicted JSRU and ILS as the best and second

best algorithms, but failed in different ways at predicting the subjective

ordering of the other three pitch extractors. The unweighted measure and the

TI measure performed significantly worse.

112

............... ........°.



Report No. 5726 Bolt Beranek and Newman Inc.

Objective
Measure AMDFD Gold -_S S ILS

a

ODFL-C-EF 5.31 23.25 22.01 7.10 6.01

EFL-DFL-EL 5.08 19.89 15.59 6.50 5.30

EDFL-EDL-EFL 4.95 19.61 18.97 6.91 4.48

EPL-EDFL-zL 4.67 15.96 15.22 6.38 3.93

EFL-EFL-EL 4.53 15.77 15.21 6.35 3.90

C-C-C 14.22 23.77 23.47 16.55 11.73

TI Measure 3.77 15.16 14.65 7.34 4.39

TABLE 13. Objective error scores produced by selected 5 best measures and 2

reference measures, for the clear condition.
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Objective
Measure AMD- 2] Gold -IA JSR.

EDFL-C-EF 28.54 32.10 30.01 28.02 16.21

FL-DFL-EL 24.79 23.54 23.63 19.06 11.07

EDFL-EDL-EFL 30.58 31.83 29.57 28.27 16.15

EFL-EDn-EL 21.31 23.06 19.99 18.71 11.04

EPL-EF-EL 19.79 22.99 18.94 18.53 11.04

C-C-C 42.49 36.54 37.51 38.30 27.45

TI Measure 22.90 35.90 17.61 35.57 23.82

TABLE 14. Objective error scores produced by selected 5 best measures and 2

reference measures, for the ABCP noise condition.
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9.* SUNNAY AND FUTURE RESEARCH

- From a review of the available pitch extractors, we chose and implemented

five algorithms. By modifying an existing algorithm, we developed and tested

an automtic method for extracting accurate, reference pitch and voicing data

from the subglottal signal recorded simultaneously with the speech signal

*using a miniature accelerometer. Since the accelerometer is relatively

insensitive to acoustic background noise, this method yields accurate pitch

I-

and voicing data even in noise.

For formal subjective evaluation of the chosen pitch extractors, we

I developed a speech database of 48 sentences that are likely to cause pitch and

voicing errors, which facilitates efficient testing. We generated the test

stimuli using two 2.4 kbitls coders (LPC and HDV), 6 pitch extractors (5

Salgorithms under test and the reference), and 2 noise conditions (clear and

ABCP). We ran two separate tests, one for each noise condition. Eight

listeners rated the speeah quality of the stimuli on an 8-point scale. The

results of the subjective tests showed the reference subglottal-signal-based

* pitch extractor to be the best under all four coder/noise conditions,

* validating its use as reference in our subsequent objective evaluation work.

We identified two best pitch extractors under test; one produced the highest
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mean rating in the clear and the other, in ABCP noise.

The objective evaluation method we developed involves comparing, on a

frame-by-frau. basis, the teat pitch extractor data vith the reference pitch

data, computing objective pitch and voicing error measures, and averaging over

the sentences from the speech database. for developing objective measures, we

first conducted a study to assess the perceptual effects of introducing

different types and mounts of pitch and voicing errors into the reference

pitch data. Based on the results of this study, we developed a large number

of objective measures for evaluating pitch extractors, using different

combinations of one or more of the following components: percentage of the

frames containing voicing errors and gross pitch errors, energy weighting,

weighting based on the duration of the errors, pitch frequency and pitch error

weighting, and context-dependent error measurement. We also implemented two

previously reported objective measures. We found that 12 of our objective

measures provided consistently high correlation with mean subjective ratings

in each of the four cases, two coders each in clear and in ABCP noise. In

contrast, the previously reported measures provided high correlation in the-

clear and substantially lower correlation in the noise. Finally, our best

overall objective measure produced excellent correlation, ranging from -0.953

to -0.995, with the overall mean subjective rating. This measure also
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predicted nearly perfectly the rank ordering of the five test pitch extractors

by the subjective rating, in all coder/noise conditions.

Finally, we suggest four problems for future work. First, the results

- from our detailed examination of the reference FPRIK pitch data given in

Section 6.2 indicate the potential, through additional work, for substantially

cutting down the 1 to 1.5% voicing errors. We believe that the FPRM4 method

can be and should be an excellent research tool in all speech processing work

involving automatic extraction of accurate pitch or voicing or both.

Second, some of the pitch algorithms tested in this research (e.g., JSRU

and FPRDI on speech; see Tables 3 and 4) can be improved with the use of a

better voicing algorithm. Additional work may be performed by testing various

ways of combining pitch extractors with voicing decision algorithms.

As a third area of work, we suggest testing the pitch algorithms in

different acoustic backgrounds involving different noise spectra and different

overall noise levels.

Fourth, the objective pitch evaluation measures developed in this

research may be combined with other objective speech quality measures for
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evaluating the speech quality of pitch-excited speech coders. Previous work

in this area has not included pitch and voicing data as part of the objective -

speech quality measures, under the tacit assumption that these data have been

extracted without any error (see (241, for example).
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